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a b s t r a c t

In this paper, we consider the problem of cloud market share among Infrastructure as a Service (IaaS)
providers in a competitive setting. The public cloud market is dominated by few large providers, which
prevents a healthy competition that would benefit the end-users. We argue that to make the cloud
market more competitive, new providers, even small ones, should be able to inter this market and
find a share. This problem of deeply analyzing the cloud market and providing new players with
mechanisms allowing them to have a market share has not been addressed yet. In fact, to make the
cloud market open and increase the cloud service demand, we show in this paper that the cloud
providers have to compete not only over price, but also quality. Most of the research performed in the
cloud market competition focus only on pricing mechanisms, neglecting thus the cloud service quality
and user’s satisfaction. However, to be consistent with the new era of cloud computing, Cloud 2.0,
providers have to focus on providing value to businesses and offer higher quality services. As a solution
to the aforementioned problem, we propose a conceptual, user-centric game theoretical framework
that includes a two-stage game: 1) to capture the user demand preferences (optimal capacity and
price), a Stackelberg game is used where IaaS providers are leaders and IaaS users are followers; and
2) to enhance the service ratings given by users in order to improve the provider position in the market
and increase the future users’ demand, a differential game is proposed, which allows IaaS providers to
compete over service quality (e.g., QoS, scalability and adding extra features). The proposed two-stage
game model allows the new IaaS providers, even if they are small, to have a share in the market
and increase user’s satisfaction through providing high quality and added-value services. To validate
the theoretical analysis, experimental results are conducted using a real-world cloud service quality
feedback, collected by the CloudArmor project. This research reveals that due to the fact that service
customization tends to enhance the customers loyalty in today’s subscription cloud economy, the
best strategy for small IaaS providers is to increase the service cost and improve the quality of their
added-value solutions to prevent customers’ defection. This not only elevates the provider’s profit, but
also increases the quality equilibrium that leads to a higher user satisfaction. Consequently, higher
satisfaction enhances the provider’s rating and future users demand.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivations

The rising demand in the cloud infrastructure service mar-
ket has tempted a large number of technology providers to
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Fig. 1. Cloud revenue race among IaaS providers.

participate and compete in the market [1]. However, today’s
cloud market is dominated by only few large providers. As re-
ported by the Synergy Research Group 2017,1 Amazon, Microsoft,
Google, and IBM gained ground in the market at the expense
of smaller IaaS providers. The medium sized IaaS providers lost
1% of the market and a large number of small IaaS providers
collective market share dropped by 4%, as illustrated in Fig. 1.
Such a dominated market prevents a healthy competition. It also
hinders compatibility with private clouds and prevents offering
personalized added-value services by resellers [2]. Lack of these
services may threaten the wide adoption of cloud computing in
many industries. Thus, for the growth of the cloud computing
industry, there is an increasing need to open the market to
the new and smaller providers and create a more competitive
environment.

Cloud IaaS has been in the center of attention for years and
several research proposals about the technology itself have been
lunched. Nonetheless, there is an urgent need to explore and
address the business issues surrounding cloud computing, while
considering the technical characteristics of such a paradigm.
Nowadays, online market and rating platforms made it easy
for users to compare a wide range of infrastructure services
and for IaaS providers to establish their own credibility. In this
paper, we argue that each IaaS provider entering the market
needs to distinguish itself from the already established players
and compete over both price and quality. As outlined in [3],
today’s market of Cloud 1.0 is price-focused. For that reason,
there are extensive research that considered pricing competition
and proposed optimal pricing strategies in order to maximize
the final revenue of cloud providers [4,5]. However, there is a
large number of modern business applications for which a price-
focused service model will not be adequate. Often, users hesitate
to move their critical business process to the cloud since the
first-generation cloud obscured its operations detail behind its
low pricing models [3]. Hiding the details blurs the vision of
customers about the trade-offs that the IaaS provider has made
in order to offer computing at such a low price.

The new era of cloud computing, Cloud 2.0, has been emerged
to focus on providing value to small and medium enterprises
(SME) as well as large enterprise markets at higher costs as
well as higher quality [3,6–9]. For the revolution of Cloud 2.0 to
take place for IaaS, two transformations need to occur: (1) IaaS
providers must be prepared to provide value to businesses that
entices them out of their built-in IT resources and applications;
and (2) customers must demand a combination of fast, secure,
and reliable IaaS from the providers to meet their end users’

1 www.srgresearch.com.

expectations [10]. In fact, data security and privacy are highly im-
portant in the context of Cloud 2.0 where cloud, fog and IoT must
be consolidated and application providers are granted privileges
to use and process the data [11]. In this context, to ensure the
availability and delivery of low-latency services, Cloud 2.0 can be
integrated with fog and edge computing to deal with the massive
data volumes being produced by devices and users [12].

As an example of a cloud provider moving towards this rev-
olution, SITA2 is an IaaS provider that offers mobility-friendly
on-demand hosting and application services specifically designed
for the air transport industry. SITA has connected more than 160
airports which enabled the organization to host applications ac-
cessing to airports systems, such as terminals, gates and parking.
A research conducted by Microsoft Cloud and Hosting Study3
also confirmed the Cloud 2.0 movement by showing that 89% of
companies are willing to pay additional fees for cloud manage-
ment services. Despite the large number of pricing competition
models, to the best of our knowledge, no one tackled the issue of
the cloud providers competition from the perspective of service
quality and end-users satisfaction. The only study about quality
competition has been conducted by Fan et al. [13] who considered
market competition among a software as a service provider and a
traditional software provider. Their research focus on marketing
advantages of bundling software in a service, neglecting the tight
competition among cloud providers themselves and the user
satisfaction effect on providers’ revenue.

Considering the initiatives of Cloud 2.0 movement, this paper
promotes a healthy market competition through rigor economical
and theoretical models. To build a practical roadmap, we propose
to empower new and small providers by considering two key
features of Cloud 2.0:

1. High quality services: Considering the increasing number
of clouds deployed in private data centers, the classic ap-
proach, such as the one used by Amazon, to build a cloud
in which hardware and software developments are in-
sourced, is no longer efficient and hardly deployable. In-
stead, clouds are being built out of commercial technology
stacks with the aim of enabling the infrastructure providers
to access the market rapidly and compete while provid-
ing high-quality services. However, finding cost-efficient
component technologies offering high reliability, continues
support, adequate quality, and easy integration is highly
challenging. Unlike most of the research performed in the
cloud market competition focusing only on pricing mecha-
nisms, we model the competition from the perspectives of
cloud service quality and user’s satisfaction by focusing on
added-value and superior quality services. Enabling small
or new providers to access the market and offer person-
alized added-value services within our proposed model is
part of this feature of Cloud 2.0 that enhances compatibility
with private clouds.

2. Long-term commitment: The success of modern business
applications relies on the reliability of services, such as
incident response, security hardening, SLA assurance, soft-
ware updates, and performance tuning. In fact, 80 percent
of downtime is caused by service provisioning problems.
Traditionally, these services have been delivered by the IT
departments, and simply deploying remote servers in the
cloud does not solve the services problem. Because services
in the cloud will most likely be outsourced, they must
be delivered while considering the customer’s needs in a
long-term commitment vision. Moving towards this long-
term commitment strategy will drive providers to better

2 https://www.sita.aero/.
3 http://partner-l1.microsoft.com/hosting-cloud-research-report-2017.
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focus on customer satisfaction to enjoy higher benefits.
Our simulations also confirmed that providing added-value
services along with customization could increase long-term
commitment which is indeed very profitable.

1.2. Problem statement and contributions

In this paper, we consider the problem of IaaS cloud market
share taking into consideration the need for new cloud providers
to be in the market and the requirements of Cloud 2.0. We
propose a conceptual, user-centric two-stage game theoretical
framework that can help the IaaS providers and users optimize
the service quality with a balanced profit. The first stage of
our conceptual framework uses our Stackelberg game [14] to
identify the user demand preferences and set the optimal price
and capacity for the IaaS provider. The Stackelberg game model
focuses on interaction among a single IaaS provider with a group
of users to appropriately capture the demand elasticities and
set the price and allocate resources for each Virtual Machine
(VM) to meet the Service Level Agreement (SLA) and match the
customers interests. However, our Stackelberg model does not
consider the competition among the IaaS providers to provide
higher quality services. Therefore, in the second stage, we for-
mulate this competition through a differential game with service
quality features as the main competitive factors. Most of the
studies on strategic interactions among the cloud participants are
grounded in static frameworks [15,16]. These models overlook
the strategic issues arose when providers interact repeatedly
over time. Thus, to tackle the limitation of static frameworks,
we introduce a non-cooperative dynamic differential game that
captures the important dimension of time.

The designed differential game takes multi-tenancy property
into account, which leads to define competitive advantages for
both the large and small IaaS providers. The large providers
(the market leaders) make their profit through a virtuous cycle
reflected through the following causal associations: (1) the more
customers an IaaS provider gets, the more infrastructure and the
better resource provision with robust cloud features (e.g., higher
availability and more storage) it can afford; (2) the more infras-
tructure, the better economies of scale and the cheaper prices
for IaaS; and (3) the lower prices and the better their quality,
the more customers the provider can get. Meanwhile, the small
IaaS providers have fewer users and limited resources. Thus,
by targeting a specific industry or local region, they can have
tenants who share the same scheme with similar requirements
such as complying with data and security regulations, national
and international standards or dealing with compatibility issues.
This enables them amalgamate their needs by customizing their
services to add value to the users’ business solutions. Provid-
ing personalized cloud services can further drive customer loy-
alty [17]. To reflect the above arguments and take them into
account, we introduce three main competition factors including
ratings by users that reflect customers satisfaction, low cost QoS
provisioning, and customization or added-value services.

In summary, our main contribution is a two-stage game theo-
retical model that:

• Allows new and small IaaS providers to compete against
the existing and large ones and have a market share, which
enables a productive cloud market industry that benefits the
end-users. To the best of our knowledge, our work is the first
that investigates this competition in the cloud computing
context.

• Maximizes users satisfaction modeled using users’ ratings
by providing a continues service quality development. It
is the first research that models a dynamic competition
considering the quality of service among IaaS providers.

• Captures user preferences and demand elasticities for op-
timal price and resource allocation. To ensure the contin-
ued validity of the optimality in the presence of changing
internal or external factors, a post-optimality analysis is
provided.

The proposed model can help new born IaaS providers identify
their users’ needs and potential markets, anticipate their compet-
itive advantage, formulate their valuation model and create new
service provisioning scenarios. We implement our model using
a real-world dataset containing users’ ratings over cloud service
quality features, obtained from the CloudArmor project.4 Finally,
it is worth mentioning that because the problem of making the
cloud market competitive by analyzing how small providers can
get a market share has not been addressed yet, no benchmark has
been found for the purpose of comparison.

2. Related work

Small and medium businesses can take the advantage of cloud
computing in several ways [18]. Cloud computing offers scalable
services that businesses can use on demand as much as they need
to. The competitive market of cloud services provides a variety of
options in pricing and quality. The users can always shift their
host provider to another provider offering more opportunistic
service or lower price. Due to this opportunistic characteristics,
this industry is predicted to reach $270 billion in 2020 [19]. Cloud
economics plays a significant role in shaping the future of cloud
computing industry. The economics of the cloud computing can
have two dimensions [20]: (1) intra-organization that deals with
internal factors such as labor, power, hardware and so on; and
(2) inter-organization that refers to market competition factors
between organizations such as price, quality of service, and repu-
tation. A third dimension can also be considered where providers
can adopt a cooperation strategy by forming coalitions or fed-
erations among data centers [21]. In such federations, different
challenging problems have been addressed including virtual net-
work provisioning [22] and trust management [23]. This paper
deals with the second dimension. In this section, we present
the work related to market share modeling from economics and
marketing literature followed by the work done related to cloud
services quality and pricing strategies.

2.1. Market share dynamics

Most of the proposals in the literature about market share
are static [24]. A non-static approach has been taken by Breton
et al. [25], who studied dynamic equilibrium advertising strate-
gies in a duopoly market. They defined a model to formulate
the market share dynamics for two competitors and obtained a
feedback differential Stackelberg equilibrium. Gutierrez et al. [26]
analyzed the dynamic strategic interactions between a manu-
facturer and a retailer in a distribution channel for innovative
products. The underlying assumption was that the retail demand
for such a product is influenced by word-of-mouth from past
adopters. This influence creates a trade-off between immediate
and future sales and profits of the manufacturer. The obtained
equilibrium dynamic pricing showed that in some cases, far-
sighted retailer is more profitable. The above mentioned studies
utilize differential game to help businesses optimize their sale
and advertisement channels regardless of the customer satis-
faction, while this paper considers the technical characteristics
of infrastructure cloud computing environment to distribute a

4 https://cs.adelaide.edu.au/~cloudarmor/ds.html.
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fair market share among IaaS providers and fulfill the users’
requirements.

Only few proposals have explored the users’ ratings impact
on business owners profit [27]. Nonetheless, their importance in
marketing strategies has been recognized [28]. Duan et al. [29]
studied video sales and movie recommender systems and found
that users’ ratings reflect movies quality, but they do not per-
suade the users to buy. In fact, they increase the users’ awareness
by word-of-mouth that is central to the efficacy of providers and
increases their sales directly. Completing their study, our research
proves that cloud service quality significantly affects the overall
users’ ratings, and further shows how cloud providers can take
the advantage of those ratings to enhance reputation and increase
profit.

2.2. The competition among cloud service participants

Game theory has been successfully applied in the cloud com-
puting area, for instance for resource allocation and pricing mech-
anisms, where the interactions of players have to be taken into
account [20]. A user-provider interactive approach is taken by
Hadji et al. [30], where a Stackelberg game is designed to consider
constrained pricing with limited resources offered by a cloud
service provider and the optimal user demands. Xu et al. [5]
optimized a pricing policy for cloud service providers to better
compete with each other under the evolution of the cloud market.
Forming a Stackelberg game, the authors applied a reinforcement
learning (Q-learning) to find out an optimal policy for the leader
provider. Following the leader, the optimal policy for followers
will be uncovered. In the same line of research, Shen et al. [31]
used a Stackelberg game to model the interactions among data
providers, service providers, and users. The authors studied the
optimization problem of the players’ profits using deep learning
in a context of data markets. However, price is the only utility
factor considered in these studies and the importance of QoS and
user satisfaction is somehow neglected.

Zhao et al. [32] investigated the impact of the two factors of
energy consumption as well as SLA violations on degrading the
cost-efficiency of data centers and the cloud providers’ revenue.
The authors developed online VM placement algorithms as an
optimization problem of maximizing revenue from VM migra-
tion and achieved promising results. The research conducted by
Kilcioglu et al. [33] calibrated a static model for price–quality
trade-off in two cases of monopoly and duopoly price competi-
tions where the IaaS marketplace is referred to as commoditized
from the perspective of economic competition. The reason is that
cloud providers use similar physical hardware which cannot be
differentiated from each other and profit margins should become
null. The conducted experiment explained the price cutting be-
havior of the current market trend and also how providers are
able to make a profit despite predictions that the market should
be totally commoditized. Conversely, this paper emphasizes a
different approach aligned with the vision of Cloud 2.0. Commodi-
tization for young and small competitors is not profitable and
these providers cannot survive in the market of Cloud 2.0 due to
their lower number of users and higher expenses. We advocate
smaller providers to differentiate themselves from the established
large providers in the market by providing added-value services
to their customers.

The only study on cloud service quality that inspired our
research is performed by Fan et al. [13] who considered market
competition among a software as a service provider and a tra-
ditional software provider as a differential game. This research
analyzes a short and long-term competition for price and dy-
namic quality between the two firms. The authors found that
the cost of software implementation can significantly affect the

equilibrium price while quality improvement has a more robust
effect. Our work differs from this research in many points: (1) we
focus on internal competition among IaaS providers considering
the technical advantages and challenges specific to IaaS, specif-
ically when a new provider enters the market to compete with
big and dominant providers; (2) the user demand is formulated
based on the user preferences and the two proposed game models
prioritize the user satisfaction considering price, capacity and
quality optimization; and (3) our model contains a continuous
game loop where the players enter two different games and can
evaluate post-optimality analysis to choose the right game, the
right stage, and the right time to enter and to stay. Our post-
optimality analysis also informs the players about the changes to
the optimum values as they change over time.

3. Framework overview

The race to maximize the revenue, specifically for the new en-
trants to the cloud market, entails formulation of non-cooperative
games. We form two key competing players representing each a
group of the same type: (1) a small and fresh provider, and (2) a
large and reputed provider. Conventional game theoretic frame-
works modeling competition among players highlighted static
models. A dynamic model enables the dimension of time, highly
important to recognize the competitive decisions that change
over time. Differential games that are dynamic in nature pro-
vide powerful tools to model competition in continuous time. In
these games, critical state variables, such as demand and market
share, are changing over time according to specific differential
equations. Differential games have been widely applied in var-
ious domains, for instance to analyze competition in dynamic
advertising and pricing [26].

The proposed conceptual model is specifically designed for the
IaaS market. It is worth mentioning that game theory models
could be applied not only to IaaS, but also to SaaS and PaaS.
In fact, game theory, as a formal and mathematical framework
that studies strategic interactions among players for decision
making has been successfully applied in the cloud computing
area, for instance for resource allocation and pricing mechanisms.
However, since the technicalities and concerns differ from one
layer to another, we argue that one model should focus on one
particular layer. In this paper, the focus is on IaaS, and the
designed games target the IaaS layer with its specific characteris-
tics. Among which, multi-tenancy at the infrastructure level with
performance segmentation [34] is specifically considered and
modeled to drive competitive advantages in our model. Another
significant aspect to be considered in this context is that multi-
tenancy in other layers is highly different in nature and scale and
goes beyond the infrastructure. Thus, at the SaaS level, multi-
tenancy allows the database schema to be shared to support
customization of the business logic, workflow and user-interface
layers. For instance, Salesforce.com has 72,500 customers who
are supported by 8 to 12 IaaS multi-tenant instances, where
each one of these instances supports 5000 tenants who share
the same database schema at the SaaS level. This difference in
the multi-tenancy scalability between the two layers affects the
pricing models and the competition strategies consequently. Our
model proposes customization as a competitive advantage for
IaaS, while it is considered as a must in the SaaS layer. Therefore,
our mathematical model fits only IaaS providers. Other technical
characteristics that make our model appropriate for IaaS but
not SaaS are the important IaaS decision variables, namely: VM
request size and preserved capacity, and rate of IaaS demand
increase and drop, which differ categorically from the distribution
of demands on software.

Considerable research efforts have been undertaken examin-
ing the physical and hardware aspects of IaaS. The main objective
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of this paper is to contribute to the business aspects of IaaS
market and explore the business issues surrounding cloud com-
puting while considering its technical characteristics. Thus, we
do not use hardware and network measurements such as CPU,
memory, hard disk, and transfer rates between VMs, but instead,
we measure the price, service quality factors (based on SLA) and
end-user satisfaction level, which are related to and relevant for
Cloud 2.0.

This research tackles the problem of maximizing the IaaS
providers’ revenue through two interactive games in a cycle with
11 steps, as presented in Fig. 2. The first stage is the cloud market
identification and demand provisioning for a new IaaS provider.
The box on the top including the service selection Stackelberg
game illustrates six interactive steps among an IaaS provider as
the leader and the IaaS users as the followers. In the first and
second steps, the IaaS provider kJ announces its price, quality
and the average rating obtained so far. Then, the users decide
the amount of their request (step (3)). The IaaS provider predicts
the future user rating, plans the optimal capacity and offers the
actual price under guaranteed SLA (steps (4 and 5)). In the final
step (6), the user provides its rating. A brief explanation of this
model needed in the rest of this paper is provided in Section 4
and more details can be found in our previous work [14]. This
game produces two outcomes: optimum price and capacity of VM
(P∗, φ∗).

After setting the price and capacity (step (7)), the provider en-
ters into the second game (called differential competition game)
which is proposed in this paper. During step (8), the IaaS provider
has to compete with all the existing IaaS providers to enhance its
service ratings through a justified amount of quality increments.
The IaaS quality factors include functional and non-functional at-
tributes such as QoS, adding new features, scalability and security.
As our objective is to analyze the entrance of new providers to
the cloud market, we denote by k1 a typical small and new IaaS
provider, and by k2 a typical well-established IaaS provider com-
peting against k1. The outcome of the differential game (Game 2)
is the required amount of quality improvement during the time
interval [0 − T ] for a given T .

In the meantime, the optimality of the obtained values has
to be analyzed since the game is dynamic and the values of the
variables are changing. The users request (in terms of VM) arrival
rate l that depends directly on the number of end users, will be
used to assess the optimality of VM’s price and capacity in step
(9). Thus, if the variation of l remains less than a threshold, no
changes are required and players shall stay in the second game
(step (10): No). However, if the variation exceeds the threshold,
a new optimal price has to be calculated using the new value of l
(step (10): Yes). In the event that the price deviates from a certain
threshold (the game sensitivity analysis), the game players have
to go back to the Stackelberg game (Game 1) and start over the
game, which includes computing the provider and users’ best
responses (step (11): Yes). Otherwise, the two IaaS providers only
need to recompute their own best responses and obtain a new
price and capacity through Game 1 (step (11): No).

The choice of the different techniques of our approach is
not random, but strongly motivated by the appropriateness of
the game theoretical models to tackle the problems addressed.
The choice of game theory is motivated by the need to model
the strategic interactions among different types of providers and
by the fact that the cloud market includes selfish and utility-
maximizer agents whose strategic actions influence each other.
In fact, the first game part, namely the Stackelberg game, is
the de facto approach to model strategic interactions such as
the ones we model in this paper, where some players are lead-
ing the market, and where the actions of the other players are
constrained by the first move of the leaders. In this context,

Fig. 2. Hierarchical Stackelberg and differential games’ framework.

increasing the utility of cloud service consumers can decrease
the profit of providers if not strategically planned. Stackelberg
game provides a powerful framework to model and analyze this
situation in which cloud providers can see their customers’ ex-
pectations (i.e. quality–price tradeoff), and then optimize their
price and preserved the capacity to earn user satisfaction as
well as high ratings. The second part, namely the differential
game is motivated by the dynamic and time-sensitive aspect of
the competition among cloud providers, modeled as a conflict.
Differential games have been proved to be highly appropriate for
the modeling and analysis of conflicts in the context of dynamic
systems that cannot be captured using static approaches where
state variables evolve over time according to given differential
equations. Our non-cooperative differential game allows us to
model the maximization of the total discounted IaaS providers
payment over the planning horizon [0 -T] as an optimal control
problem. Moreover, the game allows us to capture the competi-
tive factors and their effects on the providers’ profit through the
important dimension of time.

Remark

In concrete cases, IaaS providers have multiple types of VMs
with different prices and performances. However, this situation
does not limit the applicability of our model. We only considered
one type of VM for the sake of simplicity and presentation in
our mathematical modeling. Since there is no interdependence
of VM factors in our model, a real IaaS provider who provides
more than one type can use the model for every single type of
VM considering the competitors who provide the same type.

Thus, in our game 1 (the service selection Stackelberg game),
players will play repeated games in parallel; each game will
consider one VM type. Thus, the leader will announce in par-
allel different prices and qualities, each price and quality are
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Table 1
Notations used in the service selection Stackelberg game.
Decision variables

xi VM request size of user i for the IaaS
φ VM preserved capacity
P Price per VM of the IaaS

Input parameters

i = 1, 2, . . . n ∈ N Index of n users in the set N
Bi User i budget
Ri Rating utility of IaaS provider from user i
ri Service rating of user i for the IaaS provider
αi IaaS price elasticity for user i
βi IaaS rating elasticity for user i
γi Size and number of VMs elasticity for user i
l VM requests’ arrival rate
µ Constant scale of user IaaS demand
Q Guaranteed QoS as stated in SLA
C0/C Fixed/marginal cost of the infrastructure
λi1/λi2/λk Lagrange multipliers

announced in one individual game. The users (i.e. the followers)
will react to each of those individual games, and a same user can
also play several games in parallel. Each individual game 1 will
produce the optimum price and capacity of one VM type, which
will be used in game 2 (differential competition game). The same
scenario continues then in this second game. Consequently, the
overall situation can be seen as many parallel and independent
two-stage games, each of which is considering one VM type.
For example, let us consider Provider 1 providing VM type 1
and compare it with Provider 2 who has VM type 1. In parallel,
Provider 1 with VM type 2 can compete with the same or another
provider providing type 2.

4. IaaS selection Stackelberg game

In the first game, we formulate a Stackelberg game that mod-
els the cloud service market interactions between a typical IaaS
provider as a leader and the service users as followers. The users
observe the price and ratings to adjust their demand accordingly.
In quest of the users’ demands, the IaaS provider makes a decision
on its pricing strategy and optimal capacity. The game parameters
are provided in Table 1. We define the user demand as a Cobb–
Douglas function to model demand elasticities and variations
specific for each user in terms of price and rating [35]. It is
assumed that the user will have the opportunity to verify the IaaS
provider rating that reflects the actual user satisfaction level. The
user demand function is defined as follows:

Di(xi, P, ri) = µ xγi
i P−αi rβi

i (1)

where αi, βi and γi, i = 1, 2, . . . , n are elasticities (variations)
of the IaaS price P , rating ri and VM size xi respectively. The price
elasticity αi is dependent on the user i because it reflects the price
the user is willing to pay for the provided infrastructure. Market
users have different requirements and their satisfaction levels
differ accordingly. Thus, users do not react evenly to the same
price or rating. It is the combination of these factors that produces
different values of αi, βi and γi. The user aims to maximize its
payoff as follows:

maximize UP(xi) = Di(xi, P, ri) − P
subject to Pxi ≤ Bi, xi ≥ 0

(2)

The IaaS provider is required to process users requests on time
to maintain its reputation through the user ratings. Thus, it is
highly desirable to consider VMs processing rate that shows VM
capacity of the IaaS provider, denoted as φ. A large processing rate
requires increasing the number and capacity of VMs, meaning a

higher cost for φ that includes fixed cost of C0 and marginal cost
of C . Thus, the total cost for VM capacity φ is C0 + Cφ.

Following previous literature in cloud computing [13], we
model the arrival of VM requests as a Poisson process with mean
arrival rate l. The average delay for a request in an M/M/1 queue
can be defined as 1

φ−l . The IaaS provider aims to optimize its
profit by increasing the price and ratings given by the users, and
minimizing the costs. Thus, the IaaS provider’s (i.e., the leader)
optimization objective is:

maximize PP(P, φ) =

n∑
i=1

(P − φ C) D(x∗

i , P, ri) +

n∑
i=1

Ri − C0

subject to
1

φ − l
≤ Q

φ > 0, P > 0

(3)

Ri is the rating utility that is affected positively if the given rating
is above the average user rating, and is affected negatively if the
rating is below that average. Details of user rating prediction and
rating utility calculation can be found in our previous work [14].
As usual, we use backward induction to find the equilibrium point
of our Stackelberg game. Consequently, the followers’ problem is
solved first to get the response function of the users, and then the
leader’s decision problem is computed considering the possible
reactions of the followers in order to maximize the provider’s
profit.

4.1. User best response

Because the objective function shown in Eq. (2) is continuous
and concave with regard to xi, we use the Lagrange multipliers,
λi1 and λi2, with Kuhn–Tucker conditions to obtain the solution.
So, we will have a new objective function as follows:

LUP = Di(xi, P, ri) − P − λi1(xiP − Bi) + λi2xi (4)

with the following conditions:

λi1(xiP − Bi) = 0 (5)

λi2xi = 0 (6)

λi1, λi2, xi ≥ 0
The only coupling point between users is xi, so we take the

derivative with respect to xi.
∂LUP
∂xi

=
∂Di(xi, P, ri)

∂xi
− λi1P + λi2 = 0 (7)

We have two cases: (1) xi = 0: regardless of the value of λi1
and λi2, this means the user is not demanding any services, so its
utility will be null; and (2) xi > 0: from slackness complementary
condition in Eq. (6), we can conclude that λi2 = 0; so we have:

xi = (
λi1Pαi+1

rβi
i γiµ

)
1

γi−1 (8)

By substituting xi from Eq. (8) in Eq. (5) we obtain λi1:

λ

1
γi−1
i1 =

Bir
βi
i γiµ

P
αi+1
γi−1 +1

(9)

The final response xi from user i is attained by replacing Eq. (9)
in Eq. (8).

x∗

i =
Bi(r

βi
i γiµ)

γi−2
γi−1

P
(10)
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The above obtained x∗

i is optimal where Eq. (5) slacks and
λi1 > 0. However, we claim that it is reasonable to consider
slackness rather than binding, since having λi1 = 0 is an extreme
case where the user cares only about the price and does not
consider the previous ratings or quality.

4.2. IaaS provider best response

Using Lagrange multiplier λk, we model the objective opti-
mization in Eq. (3) as follows:

LPP (P, φ, λk) = PP(P, φ) − λk(
1

φ − l
− Q ) (11)

The Kuhn–Tucker condition for our model is:

∂PP(P, φ)
∂φ

− λk
∂( 1

φ−l − Q )

∂φ
= 0 (12)

∂PP(P, φ)
∂P

= 0 (13)

λk(
1

φ − l
− Q ) = 0 (14)

where λk ≥ 0, P, φ > 0. To find the optimal capacity φ, we first
assume that Eq. (14) binds and λk > 0. Referring to Eq. (12) we
have:

CDi(x∗

i , P, ri) − λk(
−1

(φ − l)2
) = 0

λk = −CDi(x∗

i , P, ri)(φ − l)2 (15)

Knowing that C > 0 and Di(x∗

i , P, ri) > 0, we obtain a
negative λk in Eq. (15) that contradicts the defined constraint
λk ≥ 0. Therefore, λk = 0 and Eq. (14) slacks, which means the
IaaS provider should provide a higher VM capacity than what is
promised in SLA. Any assigned capacity can be optimal as long as
the following condition holds:

φ∗
=

1
Q

+ l + ϵ (16)

ϵ represents a very small amount. By solving Eq. (13) we get the
optimal price as follows:

P∗
= φ∗C(

αi + γi

αi + γi − 1
) (17)

5. Differential competition game

In the previous section, we formulated a static game involving
a typical IaaS provider and a typical IaaS user. However, the
IaaS provider does not act alone in the market. After identifica-
tion of the users’ requirements, the IaaS provider needs to plan
a suitable strategy against its competitors. To model dynamic
competition among the IaaS providers over a period of time,
we design a differential game with continuous strategies over a
finite horizon time T . The game is between a typical new and
small IaaS provider k1 with n customers, and a typical large and
established IaaS provider k2 with m customers, m ≫ n. The
list of employed notations is given in Table 2. For the sake of
simplicity, we use k when we refer to both providers. Considering
the cost, technical reality and multi-tenancy characteristics of
cloud computing, each IaaS provider faces different challenges
to compete with high quality services. In the next section, we
explain which of those can lead the way of IaaS providers.

5.1. IaaS architecture and competitive advantage

To scale the economical benefits and optimize resource uti-
lization, multiple VMs are initiated on the same physical server
simultaneously. Multi-tenancy implies multiple customers of a
services set. For instance, multiple business units within a large
organization with resources and data that should remain separate
through a logical segmentation of the shared infrastructure by
using software-defined technologies. The segmentation options
available to be considered are: physical separation, logical sep-
aration, data separation, network separation, and performance
separation. In the performance separation scheme, the infrastruc-
ture is shared but the capacity or QoS is guaranteed while no
other separation scheme ensures such a quality. As discussed
earlier, despite the tremendous momentum of the cloud com-
puting, many firms are reluctant to move to the cloud due to
the performance concerns. For that reason, we only consider the
option of ‘‘performance separation’’ in our model, which remains
a key component in the Cloud 2.0 movement. Considering the
same scheme, each provider may take its own advantage to
compete.

Competitive advantages of large IaaS providers (k2): Tenants
with guaranteed performance require consistency and
predictability which are challenging for IaaS providers since in-
frastructure is shared by many tenants. For the sake of perfor-
mance isolation, it is not enough to use host-based virtualization
technologies since the bandwidth between VMs of the same
tenant can change significantly over time. This variation depends
on the network load and usage peak from other tenants. The
larger number of customers, the less variation is expected from
the overall average demand. A large IaaS provider that serves a
large number of customers and operates within different indus-
tries and geographically dispersed locations can avoid the cost
of overbooking. New scheduling algorithms allow multiple work-
loads on the same cluster of customers to access a common data
pool along with hardware and software resources. Thus, larger
providers can balance the workloads of the same clusters and
would achieve the required performance with less preserved ca-
pacity [34]. On the other hand, a smaller IaaS provider with fewer
customers has to provide a larger amount of reserved capacity to
meet the variation. Another advantage of large infrastructure is
energy saving cost of data centers. Large tenant clusters enable
providers to shut down the idle servers and migrate tasks to other
VMs running on active servers.

The multi-tenancy architecture is not visible to the user, how-
ever the user can observe its effects. The visible effects, such
as higher availability and scalability, are directly reflected in
our model through user rating (ri) that ultimately increases the
user demand and provider’s revenue. Further, we consider the
invisible effects of multi-tenancy for the IaaS providers (ζk2 ). ζk2
is mainly considered as a discounted cost for the large provider
due to its larger infrastructure as explained earlier.

Competitive advantages of small IaaS providers (k1): Security
regulations vary specially when the IaaS provider has to operate
in diverse national and international markets. Thus, customers
require to customize the security settings according to different
country’s regulations. The same thing can happen with regulated
industries. Mobile realm is another example where customization
is highly desired. Organizations are more and more adopting
mobile applications and require to integrate them into their cloud
infrastructure without introducing network risks. The lack of
personalized infrastructure services may not allow organizations
to gain the maximum potential value of their cloud investments.
Despite the importance of customization, it is disputed that large
providers are not willing to offer customized service-oriented
architecture or application programming interfaces to SMEs [36].
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Customized use of the cloud in a multi-tenancy environment
is costly and hard to realize, unless the customers residing in
a cluster share the same scheme. Having similar requirements
(e.g., same regulations) enables the small IaaS provider to sup-
port added-value options for each application type. Since data
sources for multiple tenants are in the same database, by using
a simple data aggregation, the small IaaS provider can develop
applications specific for its group of customers. Taking the ex-
plained example of SITA, the provider created a large network
of organizations working in the air industry and expanding their
offers to applications built on top of that network.

This competitive factor is not embraced in user ratings col-
lected through online platforms and neither relates to cost. How-
ever, it definitely has a strong positive effect on the users’ de-
mand. Thus, we use ϑk1 to reinforce the formulated demand.

5.2. Differential game formulation

IaaS providers establish their credibility and gain their share
through on-line market platforms where users can express their
ratings. We make the following realistic assumption that is satis-
fied in market platforms in general.

Assumption 1. The quality of an IaaS has a significant effect on
users’ rating, so that improving the service quality will ultimately
lead to the increase of the average users’ rating.

Assumption 1 is the basis of our game design and is very
important for the validity of our game. Thus, we will validate this
assumption using statistical analysis in Section 7.

Conventionally, IaaS providers may compete over two factors:
price and quality. Several research proposals showed that due to
the cost of changing price and being inconvenient for the cus-
tomers, prices do not change frequently [13]. Thus, we consider
the optimum price as computed in the first game in Eq. (17) for
each provider, and we assume it remains constant over the time
interval [0− T ], while the quality can be updated throughout the
game. Afterward, whenever the values of the defined parameters
vary significantly enough to warrant a shift in price, the optimal
price can easily be determined by solving the Stackelberg game
with the new parameter values. Consequently, the new optimal
price can be utilized to solve the differential competition game
over the next period of time. The following definition explains
the service quality factors featured in the game.

Definition 1. The quality factors of an IaaS can be any of the
following elements:

• QoS: basic quality features such as response time, through-
put, and availability.

• Adding new service features and innovative/customized of-
fers to the existing service.

• Enhancing and optimizing cloud specific features such as
elasticity, security, and storage space.

• Supporting customers technically or non-technically.

The next assumption establishes the initial conditions to for-
mulate our differential competition game.

Assumption 2. Each player (IaaS provider) has perfect knowledge
of:

• The function Ḋk(t) determining the evolution of the user
demand, and the control path of qk(t) available to the two
players.

• The payoff function PPk.
• The initial demand state at time zero, Dk(0).

Table 2
Notations used in the differential competition game.
Decision variable

qk(t) Quality control path (quality improvement) of IaaS k
at time t

Input parameters

k1 New and small IaaS provider
k2 Existing and big IaaS provider
δk Customers’ defection rate to buy IaaS k
ρ Discount rate of future IaaS provider’s revenues
θ̂k Rate of IaaS k demands increase
θ̌k Rate of IaaS k demands drop
ηk Non-functional cost of IaaS quality (e.g. quality

attributes achieved by preserving higher VM
capacity)

fk Functional cost of IaaS quality (e.g. offering new
features and improving technical support)

ζk2 Rate of discounted non-functional cost due to large
infrastructure for IaaS provider k2

ϑk1 Rate of customization value for customers of IaaS
provider k1

[0 − T ] Time horizon of the game

However, players have no knowledge about the future states.
So, they will not be able to observe the state and update their
initial control path (qk(t)) of quality improvement. The informa-
tion structure of the game is open-loop. This means the players
should make their decisions at time t only with the knowledge
of the initial condition of the state at time zero. The intuition
behind the selection of this information structure is that IaaS
providers have to put some investment and make stable pricing
strategies at the initial stage because changing these strategies
bears some cost for both providers and their customers. Besides,
quality improvement may result in the increase of immediate
rating, but improving the average rating is a long-term strategy
and is not observable in short time.

In traditional service trading models, once customers had cho-
sen their providers, they tended to keep the relation working
since the investment has been made through a long-term con-
tract. In the subscription cloud economy, customers are much
free to defect anytime from a provider and switch to another
one as there is very little to no financial penalty to do so. There
are several variables that affect the user’s demand over time. The
demand for an IaaS increases with its rating improvement. Due
to the strong correlation between rating and quality as asserted
in Assumption 1, we use quality instead of rating. Therefore,
improvement of quality elevates the demand at a rate of θ̂k.
We also define a demand drop rate θ̌k when the other provider
enhances its service quality. Moreover, customers may defect at
a certain rate δk. Based on the predefined variables, the users’
demand dynamics evolve according to the following equations:

{
Ḋk1 (t) = (θ̂k1 + ϑk1 ) qk1 (t)

βn − θ̌k1 qk2 (t)
βn − δk1Dk1 (t)

Dk1 (0) = Dk10, 0 < t < T
(18)

{
Ḋk2 (t) = θ̂k2 qk2 (t)

βm − θ̌k2 qk1 (t)
βm − δk2Dk2 (t)

Dk2 (0) = Dk20, 0 < t < T
(19)

As discussed earlier, ϑk1 is the added-value to the quality for
IaaS provider k1. βn and βm denote the average users’ sensitivity
towards rating for k1 and k2 respectively. Eqs. (18) and (19)
explicitly describe how the service quality of the two competitors
jointly determine the dynamics of demand rate.

The marginal cost of increasing quality is considered to be
quadratic in past studies [13]. We consider the same quadratic
increment for the increase of quality. Thus, let Ĉqk(t) to be a
cost associated with the efforts to increase the quality level by
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an amount qk(t) at time t . Two types of quality improvement are
considered in our model: functional (f ) and non-functional (η).
The functional quality improvement is realized by adding extra
functionalities to the service, such as offering new features or
improving technical support. The non-functional one is related
to the quality attributes that can be reached by reserving extra
resources and increasing the processing capacity. Definition 2 de-
termines the cost of quality improvement for both IaaS providers.

Definition 2. To increase the quality, k1 and k2 incur a quadratic
cost function as follows:

Ĉqk1 (t) = fk1qk1 (t)
2
+ ηk1qk1 (t)

2 (20)

Ĉqk2 (t) = fk2qk2 (t)
2
+ (ηk2 − ζk2 )qk2 (t)

2 (21)

Concurring with the cost functions delineated by Definition 2,
the instant profit of IaaS providers k1 and k2 at time t can be
calculated according to the following formulas:

PPk1 (Dk1 (t), qk1 (t)) = (P∗

k1 − φ∗

k1 Ck1 ) Dk1 (t)

− (fk1qk1 (t)
2
+ ηk1qk1 (t)

2) − C0k1

(22)

PPk2 (Dk2 (t), qk2 (t)) = (P∗

k2 − φ∗

k2 Ck2 ) Dk2 (t)

− (fk2qk2 (t)
2
+ (ηk2 − ζk2 )qk2 (t)

2) − C0k2

(23)

Different from the instant profit of IaaS provider in the static
game in Eq. (3), we do not consider the rating accumulation
in the profit function. The reason is that we already considered
the increase of future demand due to the enhanced user rating
(quality) in Eqs. (18) and (19). The objective function is the total
discounted IaaS provider’s payoff over the planning horizon [0 −

T ]:

maximize
∫ T

0
eρt

{PPk1 (qk1 (t),Dk1 (t))}dt

subject to Ḋk1 (t) = (θ̂k1 + ϑk1 ) qk1 (t)
βn

− θ̌k1 qk2 (t)
βn − δk1Dk1 (t)

Dk1 (0) = D0k1 , 0 < βn < 1

(24)

maximize
∫ T

0
eρt

{PPk2 (qk2 (t),Dk2 (t))}dt

subject to Ḋk2 (t) = θ̂k2 qk2 (t)
βm − θ̌k2 qk1 (t)

βm − δk2Dk2 (t)
Dk2 (0) = D0k2 , 0 < βm < 1

(25)

ρ is a constant discount rate to rebate all the future costs and
revenues’ streams relative to the present. Note that Eqs. (24) and
(25) formulate two optimal control problems with the service
quality and the cumulative demand as control and state variables,
respectively. In the following section we solve these optimal
control problems.

5.3. Open-loop equilibrium solution

The optimal control theory provides appropriate techniques to
analyze differential games [37]. To examine the dynamics of the
payoff functions and the paths of control variables, we exploit the
Hamiltonian systems. In the open-loop structures, equilibrium
strategies can be discovered by computing the solution of a two-
point boundary value problem for ordinary differential equations
obtained from the Pontryagin maximum principle in Hamiltonian
functions. The Pontryagin maximum principle allows us to derive
the necessary conditions for a control path to be optimal open-
loop control. The optimal control paths of quality are defined as
follows.

Definition 3. For the IaaS provider k, the quality strategy q∗

k(t) is
optimal if the inequality PPk(Dk(t), q∗

k(t)) ≥ PPk(Dk(t), qk(t)) holds
for all feasible control paths qk(t) ̸= q∗

k(t).

To acquire the optimal control, we first formulate the Hamil-
tonian system of the IaaS providers’ payoff which is quite similar
to the Lagrangian method that we used in the first game.

Hk1 (qk1 (t),Dk1 (t), λk1 (t), t) =

(P∗

k1 − φ∗

k1Ck1 ) Dk1 (t) − (fk1qk1 (t)
2
+ ηk1qk1 (t)

2) − C0k1

+ λk1 (t)((θ̂k1 + ϑk1 ) qk1 (t)
βn − θ̌k1 qk2 (t)

βn − δk1Dk1 (t))

(26)

Hk2 (qk2 (t),Dk2 (t), λk2 (t), t) =

(P∗

k2 − φ∗

k2Ck2 )Dk2 (t) − (fk2qk2 (t)
2
+ (ηk2 − ζk2 )qk2 (t)

2)

− C0k2 + λk2 (t)(θ̂k2 qk2 (t)
βm − θ̌k2 qk1 (t)

βm − δk2Dk2 (t))

(27)

The adjoint variable or shadow price (λk) related to a partic-
ular constraint reflects the change in the optimal value of the
objective function per unit increase in the right-hand-side value
of that constraint, under the condition that all the other problem
data are unchanged. The economic interpretation of λk(t) is the
value of an additional unit of demand. For given qk(t), λk(t) > 0
implies that the IaaS provider benefits from current demands.
With a zero shadow price λk(t) = 0, the IaaS provider does
not take into account the impact of the quality on future user
demands. On the other hand, when λk(t) < 0, the IaaS provider
has no motive to sacrifice current profits for future profits, so that
it will no longer elevate the service quality.

The optimal control strategy of the original problem, as out-
lined in the control theory, must also maximize the corresponding
Hamiltonian function. Thus, based on the Pontryagin maximum
principle, all candidate optimal strategies have to satisfy the
following necessary conditions:
∂Hk1 (t)
∂qk1 (t)

= − 2(fk1qk1 (t) + ηk1qk1 (t))

+ λk1 (t)(θ̂k1 + ϑk1 ) βnqk1 (t)
βn−1

= 0
(28)

λ̇k1 (t) = ρλk1 (t) −
∂Hk1 (t)
∂Dk1 (t)

=(ρ + δk1 )λk1 (t) − P∗

k1 + φ∗

k1Ck1 , λk1 (T ) = 0
(29)

∂Hk2 (t)
∂qk2 (t)

= − 2(fk2qk2 (t) + (ηk2 − ζk2 )qk2 (t))

+ λk2 (t)θ̂k2 βmqk2 (t)
βm−1

= 0
(30)

λ̇k2 (t) = ρλk2 (t) −
∂Hk2 (t)
∂Dk2 (t)

=(ρ + δk2 )λk2 (t) − P∗

k2 + φ∗

k2Ck2 , λk2 (T ) = 0
(31)

When only one boundary condition is specified as Dk(0) = D0k,
the free-end condition is used as λk1 = λk2 = 0 at t = T . It
should be noted that the Pontryagin maximum principle is only a
necessary condition, but not essentially sufficient for optimality.
Consequently, the solution of the pair quality control in the above
equations does not necessarily converge to the Nash equilibrium.
To investigate the normality of our defined systems and to assess
if Pontryagin can provide a sufficient condition for optimality
in our case, we shall derive the monotonicity condition on the
adjoint variables in Lemma 1. This condition is important since
the adjoint variables significantly affect the payoff functions in
our optimal control-based optimization.

Lemma 1. With positive profit unit margins, we have λk1 (t) > 0
and λk2 (t) > 0 for all t ∈ [0, T ).
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Proof. Here we prove the monotonicity of λk1 (t), and the same
proof applies for λk2 (t). As stated in Eq. (29), we have λk1 (T ) = 0.
Therefore, at t = T , λ̇k1 = −P∗

k + φ∗

k1
Ck1 < 0, since P∗

k1
> φ∗

k1
Ck1 .

So, λk1 (t) > 0 as t approaches T . Now, consider λk1 (t1) < 0 for
any given t1. Then we should have λk1 (t2) = 0 for some t2 > t1
and λ̇k1 (t2) ≥ 0. Consequently, λ̇k1 (t2) = −P∗

k1
+φ∗

k1
Ck1 < 0. This

is a contradiction and λk1 (t) is proved to be positive during the
whole period of time. □

The following proposition is concluded from Lemma 1.

Proposition 1. IaaS providers’ profit optimization functions have
a normal form maximum principle with positive adjoint variables
(λk1 (t), λk2 (t)) associated with (q∗

k1
(t), q∗

k2
(t)).

Lemma 2. Pontryagin Maximum Principle (in Eqs. (28)–(31)) pro-
vides the necessary sufficient conditions of optimality and the control
path pair of (q∗

k1
(t), q∗

k2
(t)) is optimal and unique.

Proof. Proposition 1 asserts that the formulated profit optimiza-
tion problems have a normal form. It suffices to prove that the
Hamiltonian function is concave in Dk(t) for both providers k1 and
k2 in any t ∈ [0−T ]. Let (q∗

k1
(t),D∗

k1
(t)) be a pair that satisfies the

Pontryagin condition for IaaS provider k1, with λk1 (0) = 1, and for
all admissible demand states, the limiting transversality condition
holds: limt→T λk1 (t)(Dk1 (t) − D∗

k1
(t)) ≥ 0. To prove the concavity

of the dynamic function in Dk1 (t), the following condition must
hold:
Hk1 (qk1 (t),Dk1 (t), λk1 (t), t) − Hk1 (q

∗

k1 (t),D
∗

k1 (t), λk1 (t), t)

≤
∂Hk1 (t)
∂Dk1 (t)

(Dk1 (t) − D∗

k1 (t))
(32)

The left-hand-side of the inequality is negative since the Hamil-
tonian function in the optimal quality path is the maximum IaaS
provider profit that is more than its profit at any other path in
any time t . Thus, it is enough to prove that the right-hand-side
of the inequality is positive. From Eq. (29), we can see that:
∂Hk1 (t)
∂Dk1

= ρλk1 (t) − λ̇k1 (t) (33)

Replacing Eq. (33) in Eq. (32), we get (ρλk1 (t) − λ̇k1 (t))(Dk1 (t) −

D∗

k1
(t)) in the right-hand-side. From the transversality condition,

we already know that λk1 (t)(Dk1 (t) − D∗

k1
(t)) ≥ 0, so it is enough

to prove that λ̇k1 (t) is negative. It is known in optimal control
theory that the motion of shadow price is equal to the negative
derivative of Hamiltonian towards the dynamic state, so that
λ̇k1 (t) = −P∗

k1
+φ∗

k1
Ck1 − δk1λk1 (t) ≤ 0. The same logic applies for

k2. □

After proving the monotonicity of adjoint variables in Lemma 1
and the sufficiency of the Pontryagin maximum principle in
obtaining the optimal solution in Lemma 2, we can obtain the
optimal control path.

Theorem 1. The finite horizon differential game in Eqs. (24) and (25)
has a unique Nash equilibrium solution for the two IaaS providers.
The optimal quality strategies are given by:

q∗

k1 (t) = (
(P∗

k1
− φ∗

k1
Ck1 )(θ̂k1 + ϑk1 )βn

2(ρ + δk1 )(fk1 + ηk1 )
)

1
2−βn (1 − e

(ρ+δk1
)(t−T )

2−βn ) (34)

q∗

k2 (t) = (
(P∗

k2
− φ∗

k2
Ck2 ) θ̂k2βm

2(ρ + δk2 )(fk2 + (ηk2 − ζk2 ))
)

1
2−βm (1 − e

(ρ+δk2
)(t−T )

2−βm )

(35)

Proof. The two formulated differential equations Eqs. (29) and
(31) can lead us to the adjoint variables:

λk1 (t) =
P∗

k1
− φ∗

k1
Ck1

ρ + δk1
(1 − e(ρ+δk1 )(t−T )) (36)

λk2 (t) =
P∗

k2
− φ∗

k2
Ck2

ρ + δk2
(1 − e(ρ+δk2 )(t−T )) (37)

Replacing Eq. (36) in Eq. (28) and Eq. (37) in Eq. (30) gives us the
optimal quality control paths. □

Differential games enable us to analyze the dynamic nature of
competition and quality improvement. The following corollaries
and propositions are inferred from Theorem 1.

Corollary 1. Each provider’s quality improvement decreases in its
quality development cost.

Proof. The decrease is straightforward from the first derivative of
quality with respect to cost,

∂q∗
k1

(t)

∂(fk1+ηk1 )
< 0 and

∂q∗
k2

(t)

∂(fk2+(ηk2−ζk2 ))
< 0.

However, the cost decrement slope is steeper for big providers
due to serving a large number of customers. The difference is
specifically reflected in the non-functional costs since functional
costs are expected to be alleviated as the service becomes more
mature. This corollary is an evidence of the economic benefits of
continuous quality improvement for both IaaS providers to have
a higher level of quality equilibrium as well as user rating. □

Corollary 2. Higher level of customer loyalty and lower discount
factor lead to a higher quality equilibrium for both providers.

Proof. This corollary simply means the fewer IaaS providers’
customer defection rate, the more incentive for the providers to
improve their service quality. It can be inferred from the first
order conditions for Hamiltonian systems of IaaS provider k1
(Eq. (28)), where we have:

q∗

k1 (t) = (
λk1 (t)(θ̂k1 + ϑk1 )βn

2(fk1 + ηk1 )
)

1
2−βn

This implies that the two variables of customer defection rate
and discount factor are reflected through the value of the shadow
price λk1 (t). As t approaches the end of the time horizon, the
negative effect of ρ and δk1 becomes more evident:

lim
t→T

λk1 (t) =
P∗

k1
− φ∗

k1
Ck1

ρ + δk1
□

The same logic is applied for IaaS provider k2. Thus, as the
marginal values of customers drop, the service quality equilib-
rium shrinks.

Proposition 2. The quality improvement of cloud services is higher
in early stages and decreases over time.

The service quality improvement rate is steeper at the begin-
ning of the time horizon. As t approaches T , the improvement
flattens out. The reason can be the maturity of the service, getting
maximum user ratings, or adjustment of the service features and
support.

Proposition 3. Assuming that (1) both providers make the same
revenue per unit service; (2) δk1 = δk2 with the same user rating
sensitivities; and (3) ϑk1 for IaaS provider k1 and ζk2 for IaaS
provider k2 determine the quality level. If smaller providers do not
take the advantage of customization and providing value for their
target segment, then q∗

k2
(t) > q∗

k1
(t), ∀t < T . The established

condition outlines when quality improvement of the bigger providers
always dominates the smaller ones.
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In the above propositions and corollaries, we brought a num-
ber of managerial insights into attention. We showed that in the
early stage, there should be an emphasis on increasing the quality
of IaaS. Also, it will be to the IaaS provider’s advantage to reduce
the quality cost. That will increase the optimum quality level and
will give rise to a ripple effect of benefits. The dynamic differential
game will be played in a time interval, so that some of the
variables may change during that time. In the following section,
we will analyze how these variations can affect the optimality
conditions.

6. Post-optimality analysis

The input data in theoretical optimization approaches is not
subject to change, however, in real life it might be found imprac-
tical. This assumption is rather valid in a static and deterministic
environment, while the essence of our problem is dynamic. User
demand reflects market behavior that is changing, and in some
degree unpredictable. Cost and capacity estimates are sometimes
prone to errors and to changes over time due to the dynamic
behavior of the market. Therefore, an important question lies in
the sensitivity of the obtained optimal solutions to changes in the
input parameters.

We investigate the variability of VM request arrival rate due
to a future increase in the number of users. Subsequently, this
variability may affect the optimal capacity and price as well. As
a result, two types of variations may happen in the range of:
(1) objective function; and (2) constraints. The objective func-
tion’s range refers to the range over which capacity and price
coefficients can vary, without changing the basis associated with
our optimal solution. In this case, for example, by computing the
amount of change in price, we can obtain a new optimal price:
P∗
new = P∗

old+∆P∗. The constraint’s range refers to the user arrival
range so that the values of the shadow prices in terms of the
defined quality and capacity will remain unchanged.

As the number of users grows, the VM request arrival rate will
expand. The value range of l and possible changes to the optimal-
ity of the VM price and capacity are investigated in Theorem 2.

Theorem 2 (IaaS Provider Best Response Sensitivity). The optimal
solutions obtained for the IaaS provider about price P∗ and capacity
φ∗ remain optimum if:

∆l < (Q (φ∗
− l) − 1)(φ∗

− l)2  
lthreshold

(38)

In that case, the optimal price and capacity vary as follows:

∆P∗
= l ∆l C(

αi + γi

αi + γi − 1
) (39)

∆φ∗
= ∆l (40)

Proof. The expressions for the sensitivity derivatives can be
derived based on the Kuhn–Tucker conditions. The changes in
the optimum values of φ∗ and P∗ necessary to satisfy the Kuhn–
Tucker conditions due to a change ∆l in the user arrival rate
parameter can be estimated as follows:

∆P∗
=

∂P∗

∂ l
∆l = l ∆l C(

αi + γi

αi + γi − 1
)

∆φ∗
=

∂φ∗

∂ l
∆l = ∆l

Earlier, Eq. (15) proved that λk = 0, and the constraint is inactive
in the profit maximization problem in Eq. (3). Now, Eq. (14)
can be used to determine when an originally inactive constraint
becomes active due to the change in VM request arrival rate, ∆l.

Let us consider the constraint in Eq. (14) as g(x) =
1

φ∗−l − Q . The
currently inactive constraint will become critical due to ∆l, if the
new value of g(x) converts to zero:

g(x) +
dg(x)
dl

∆l = g(x) + (
∂g(x)
∂φ∗

∂φ∗

∂ l
+

∂g(x)
∂P∗

∂P∗

∂ l
)∆l = 0

Thus, the necessary change to ∆l to make g(x) active can be found
as:

∆l = −
g(x)

∂g(x)
∂φ∗

∂φ∗

∂ l

= (Q (φ∗
− l) − 1)(φ∗

− l)2 □

The change of the optimal price ∆P obtained from Eq. (39)
shall be examined for its effect on the optimality condition of the
user demand size as shown in Theorem 3.

Theorem 3 (IaaS User Best Response Sensitivity). The optimal solu-
tions obtained for IaaS user i on VM request size x∗

i remain optimum
if:

∆P∗ <
P∗

αi + γi  
P∗
threshold

(41)

Proof. To prove Eq. (41), we should calculate how much λi1
will fluctuate. Similarly, the variation in the value of Lagrange
multiplier due to ∆P can be estimated as follows:

∆λi1 =
∂λi1

∂P∗
∆P∗

The above equation can be used to determine when the originally
active constraint defined for the optimization problem in Eq. (2)
becomes inactive due to the change ∆P . Since the value of λi1 is
zero for an inactive constraint, we will have:

λi1 + ∆λi1 = λi1 +
∂λi1

∂P∗
∆P∗

= 0

From Eq. (9) we calculate λi1 as follows:

λi1 =
(Bir

βi
i γiµ)γi−1

P∗(αi+γi)

Therefore, the amount of change in the optimal price to diminish
its optimality is as follows:

∆P∗
=

−λi1
∂λi1
∂P∗

=
P∗

αi + γi
□

7. Experiments and analysis

As the main purpose of our experiments is to demonstrate the
effectiveness of the proposed games, we have to set meaningful
data and reasonable game parameters. To do so, we obtained
real-world data and previously achieved suitable values for the
parameters of the Cobb–Douglas demand function [14]. Initially,
we experimented with 300 IaaS users for the small provider
k1 using real customer ratings to investigate the sensitivity of
pricing formula to VM request arrival rate. The data was collected
from the Trust Feedback Dataset, provided by Noor et al. [38]
in the CloudArmor project.5 This dataset collects cloud service
consumers’ feedback from leading review websites (such as Cloud
Hosting Reviews and Cloud Storage Reviews and Ratings). It in-
cludes 10,000+ feedback given by nearly 7000 consumers to 113
real-world cloud services. The feedback are based on Quality of
Service attributes (e.g. availability, response time, throughput,
etc.).

5 https://cs.adelaide.edu.au/~cloudarmor/ds.html.

https://cs.adelaide.edu.au/~cloudarmor/ds.html
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Table 3
Assigned variables’ values in simulation.
Variables k1 k2
P 0.18 0.18, 0.13
C 0.000076 0.00000076
δ 0.001 0.001
ρ 0.005 0.005
θ̂ = θ̌ 0.3 0.3
η 0.5 0.5
f 0.5 0.5
ζk2 NA 0.7
ϑ 0, 0.7, 0.9 NA
l 300 900

To simulate the differential game, we assumed VM request
arrival rate to be 300 tasks per hour for k1 and 900 tasks per
hour for k2, that are realistic and commonly used values for
cloud services [39]. The price for k1 is borrowed from a local
IaaS provider in Malaysia, called exabytes.6 Due to the earlier
explained reasons, k2 price will be less or at most the same. Both
cases are to be considered in our experiments. To obtain the VM
process rate (capacity), which is the minimum speed of 2mbps,
we referred to the IaaS promised QoS in the SLA statements.
Since there is no information available about the providers’ cost,
we approximate the cost of k1 to the cost of renting large cloud
infrastructure from Google (per VM per hour) and the cost of k2
is set to be 100 times less.

The value of ζk2 (the discounted non-functional cost) is ap-
proximated using the Eta-Squared statistics of the ANOVA anal-
ysis on the acquired user ratings given to non-functional quality
features. The reason behind using Eta-Squared comes from the
fact that the average Eta-Squared of some non-functional features
(e.g., availability and response time) reflects the importance of
these parameters on customers’ demand. In fact, we used Eta-
squared to measure the effect size of the independent variables
(the non-functional attributes). On the other hand, there is no
feature representing the personalization value to customers to
be used for ϑ . So, we run our experiments by giving different
values to ϑ . The rest of the parameters are assigned based on the
past literature [13,40,41]. Table 3 depicts the utilized values of
variables in the experiments. The time axis is normalized to the
(0–1) interval.

As discussed previously, there is no similar work to our model
or related experiments to be compared to. For this reason, only
the results of our model are reported.

7.1. Significance of quality over user rating

We use statistical analysis to check the significance and con-
fidence (i.e., reliability) of the obtained experimental results and
ensure that the outcomes are statistically significant, and data are
interpreted correctly, so decisions can be made with high con-
fidence. Accordingly, one-way ANOVA was conducted to assess
the effect of the provided quality on the user rating. The ANOVA
test was performed over 2000 user ratings given to 78 distinct
cloud services considering 8 attributes representing functional
and non-functional quality features. Given that the significance
value (p) is less than the α-value (α = .001) for all quality
features, as reported in Table 4, we can rest Assumption 1 and
claim that quality attributes are strongly positively correlated
with the overall user rating score.

The analysis of variance and Eta-squared values showed that
the effect of the technical support attribute was the most signifi-
cant criterion. It was followed by customer service, response time

6 www.exabytes.my.

Fig. 3. Sensitivity of pricing optimality to the increase of VM request arrival
rate.

and availability. Taken together, these results suggest that high
levels of more tangible and measurable qualities have more effect
on the user rating score.

The ANOVA results proved that user rating has a strong tie
with after-sales service, and customer support has turned into a
crucial tool in an organization’s arsenal of sales tools. In classical
business models, there is little incentive to provide excellent
customer support since the majority of the revenue from a cus-
tomer is already secured. In today’s subscription model, however,
the equation is almost reversed. Once a service is sold, the IaaS
provider receives a very small fraction of the lifetime revenue at
the beginning of the transaction. Afterwords, the support team
is under a great pressure to keep the customer satisfied. This
satisfaction is also crucial to enhance the customer loyalty that
has a significant impact on quality equilibrium as asserted by
Corollary 2.

7.2. Sensitivity analysis

In order to evaluate the VM request arrival rate threshold
and optimality of price, we simulate an increasing number of
VM request arrival with a fixed price for IaaS provider k1. Given
the speed of 2 mbps, Q (for k1) is 900 in an hour. According to
our obtained formula in Eq. (38), we have: ∆l < 900(0.5)(1.5)2,
that makes a critical value of change to VM request arrival at
about ∆l < 1000. This means that if this provider experiences
an increase of 1000 VM request arrivals, it needs to recalculate
its pricing strategy since it is not making an optimized profit. This
sensitivity is illustrated in Fig. 3. Once the VM request arrival rate
crosses the threshold (∆l = 1300−300 = 1000), the profit starts
sinking.

7.3. Quality improvement impact on user demand and profit

During the first game, the IaaS provider has to set the optimal
price based on the predicted user demand response given the
offered price. The best pricing strategy should consider users’
reactions towards the given price. Nevertheless, there are two
possible cases for IaaS k1’s price to be considered: (1) Pk1 > Pk2 ;
and (2) Pk1 = Pk2 . It was learned that the smaller provider faces
higher costs, so that it cannot offer a price cheaper than the large

http://www.exabytes.my
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Table 4
ANOVA test results.
Service attributes Sum of squares df Mean square F Sig. (p) Eta-squared

Technical support 3215.603 1907 525.621 1701.668 .000 .817
Response time 768.870 698 145.287 537.118 .000 .756
Availability 2212.676 1414 331.846 844.832 .000 .750
Speed 1472.511 742 218.983 427.415 .000 .744
Ease of use 1541.725 1289 283.299 891.095 .000 .735
Accessibility 533.575 630 97.636 427.327 .000 .732
Operation& management features 853.372 617 149.497 358.836 .000 .701
Storage space 846.267 601 115.788 180.430 .000 .547

Fig. 4. The IaaS quality improvement of k1 and k2 .

Fig. 5. The change of user demand when Pk1 > Pk2 .

provider. Thus, k1 can offer either the same price as k2 or a higher
price. The following sections provide more details on these two
scenarios.

7.3.1. Scenario 1: Higher pricing
To assess the role of the competitive advantage of k1, we assign

three different values to ϑk1 , each representing a specific market
positioning:

1. ϑk1 = 0: in this case, the IaaS provider is not using its
strategic advantage and does not target any market niches
nor offer customization.

2. ϑk1 = 0.7: this means the IaaS provider is providing added
value for customers as worthy as the non-functional quality
advantages offered by the existing competitors.

3. ϑk1 = 0.9: this case illustrates a situation where the IaaS
provider is making extra effort to provide more value to
the customers than the existing offers.

Fig. 4(a) presents the quality improvement steps over time for
k1 and k2 when Pk1 > Pk2 . Agreeing with Proposition 2, the quality
improvement rate is steeper at the beginning and flattens out at
final stages. When k1 is providing the same value as k2, it needs
to put more effort on quality than k2. The difference of this extra
quality is higher in the first steps, but reduces over time. Thus, k1
can, for instance, expand the infrastructure to preserve a more
capacity and networking bandwidth, or reorganize the tenant
clusters. Customer support is specifically important where the
small provider operates to provide a more customized solution.
Examples of less costly quality improvement would be offering
creative features and highly customized and targeted services. It
is important to mention in this context that the numbers shown
in the figure are calculated based on the obtained units from
Eqs. (34) and (35), so they are not expressed as a percentage.
We also used a normalized time range, but with actual time,
the values of the obtained quality improvement would be higher.
However, what matters in this figure is the correct strategy of



186 M. Taghavi, J. Bentahar and H. Otrok / Future Generation Computer Systems 102 (2020) 173–189

the providers considering their competitive advantages, not the
actual value of the quality improvement. These values do not con-
vey any specific meaning on their own; comparing the strategies
of the two providers at the equilibrium point is the key objective.

Mapping the defined quality improvement to user rating in-
crement gives the opportunity to identify how the users feel
about the trade-off between the price and quality. When the
users are paying higher price and receiving lower quality, they
would expect to see much higher added-value to their businesses.
The strategic benefits will satisfy their expectations and would
rise their ratings. This is highly significant for smaller providers
to plan the right amount of investment to improve the quality
in their early stages of development. Clearly, the case where
k1 is making extra effort on providing customer value requires
additional improvement.

The effect of such a quality (rating) improvement on the user
demand rate is quite interesting. As shown in Fig. 5, k1 gains the
highest change in user demand when it is providing the same
value as k2. The change it experiences exceeds that of k2. This
can be because of receiving a closer rating to k2, which can reflect
how valuable is providing such targeted services to customers. It
is not surprising that the demand rate increases very little when
the IaaS provider is not offering any special value. Remarkably,
providing extra value does not necessarily lead to a higher de-
mand rate. Overdoing that may result in limiting the range of the
targeted customers. If the IaaS provider offers very specific and
customized services, it may narrow its range of clients and miss
the market share that it could obtain. Therefore, finding a suitable
strategy is essential for the IaaS provider that wants to compete
and earn its share of a profitable but competitive market.

7.3.2. Scenario 2: Equal pricing
In this scenario, the small IaaS provider sets the same price

as the existing IaaS in the market. Unlike the first scenario, this
time k1 has less improvement of quality than k2 when ϑk1 = 0.7
as shown in Fig. 4(b). This is due to the fact that k1 is lowering its
pricing down to the same amount as k2, while its cost is higher.
Besides, users of k1 have already gained the benefit of having
lower prices, so the provider does not have to offer higher quality
to cover the benefit of price and gain higher ratings. Meanwhile,
as expected, no difference is observed between the two scenarios
in the amount of the quality improvement when ϑk1 is 0 or 0.9.
This is reasonable because providing zero value (resp. a very high
value) demands the same quality improvement regardless of the
pricing strategy.

Fig. 6 illustrates the variation in demand rate over time. When
k1 sets equal pricing as k2, its demand increase does not reach the
change of k2’s demand, which remains higher. Unexpectedly, the
equal pricing strategy mainly affects k2’s demand rather than k1.
This event can be related to the impact of quality improvement
on the user demand rate. When k1 sets higher pricing, it can
afford more improvement leading to enhanced rating, and its
users demand gets slightly higher. Meanwhile, k2 takes the most
advantage of k1’s lower rating improvement to attract more users.
It can be inferred that customers prioritize quality over price,
which confirms the movement of Cloud 2.0. The trend of k1’s user
demand rate variation offering the highest and lowest values does
not present any significant change.

7.3.3. Provider’s profit and users’ loyalty
Total variations of IaaS provider’s profit with both pricing

strategies are presented in Fig. 7. Since the trend of profit for k1
when Pk1 = Pk2 was almost the same as when Pk1 > Pk2 , we
provided only one plot for each different case of ϑk1 . However,
as the profit of k2 differs significantly depending on the pricing
strategy (Pk1 = Pk2 or Pk1 > Pk2 ), two separate plots are depicted.

This figure provides a very useful insight for small IaaS providers
by showing that pricing does not alter profit optimization as
long as they provide a quality level adjusted with that pricing
level. Higher price demands more quality improvement to meet
the user expectation and gain high rating. Consequently, the
IaaS provider undergoes the burden of the cost associated with
that improvement such as increasing the number of servers to
reserve more capacities. Here, k1 can rely on its identified market
segment behavior through obtaining its sensitivity to price and
rating to decide about setting a reasonable price.

Although the pricing strategy does not significantly affect the
profit of k1, it has enormous influence on the profit of k2. The
reason is that k2 has already established its reputation as an IaaS
leader and obtained a high rating, so that its quality improvement
is saturated. In fact, when k1 fails to attain the customers looking
for high quality and customized services, k2 attracts them. How-
ever, k1 can recompense its profit with higher service price. In this
case, k1’s customers will mainly constitute the new public IaaS
adopters who could not enjoy the cloud computing benefits due
to their regional, national or international barriers or because of
some very customized needs. Although customization is essential
for some businesses, yet the quality features of the services are
very important. The majority of the users are not willing to
sacrifice one for the other. Thus, if the smaller IaaS providers are
ready to compete and gain more market share through their own
market segment, they need to supply a reasonable amount of IaaS
non-functional quality.

We further investigate the importance of customer loyalty
on IaaS providers’ revenue. Being loyal to an IaaS provider in
today’s subscription model has mutual benefit for both, the users
and providers. As Fig. 8 illustrates, customer loyalty is a key
motivation for quality improvement for both providers, k1 and
k2. The effect of customer loyalty is intense when the customers
exhibit a highly loyal behavior. In this case, IaaS providers commit
themselves to provide high quality services. However, customers
with low and even medium loyalty do not make a significant dif-
ference. Consequently, as the customer defection rate increases,
the user demand and provider’s profit drop. The new and small
providers are slightly more vulnerable to customer defection,
in particular when it comes to future demand provisioning. In
fact, the new IaaS providers need to establish their credibility
by increasing their users satisfaction and attracting high users’
ratings. They also have a limited range of customers compared
to the established providers. However, it is most likely that cus-
tomers who receive customized and targeted infrastructure ser-
vices would be more loyal to their providers since it is unlikely
to find such services anywhere else.

In summary, IaaS quality, specially customer support, has a
strong correlation with users’ ratings. It offers a managerial point
for IaaS providers to increase the customer loyalty through not
only customized services, but also fully commitment in after-
sale support. The results show that when the IaaS users are
paying higher and receiving lower non-functional qualities, they
would expect to see much higher added-value from the IaaS
provider. The strategic benefit satisfies the user’s expectation
and rise the provider rating. The small IaaS providers gain the
highest change in user demand when they provide the same
quality as the established ones. Notably, providing extra value
does not necessarily lead to a higher demand rate as it might limit
the range of the targeted customers. Improving the quality and
ratings of a small and new IaaS provider specifically increases its
demand rate and profit in the both pricing scenarios, higher and
equal. Setting equal pricing for both IaaS providers mainly favors
the established provider. When the smaller provider sets equal
pricing, it cannot afford more improvement that leads to a lower
user satisfaction. This failure to attract high user ratings makes
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Fig. 6. The change of user demand when Pk1 = Pk2 .

Fig. 7. IaaS provider’s profit taking different quality controls and pricing strategies.

Fig. 8. Customer loyalty effect on quality and profit.

a perfect situation for its competitor to attract them, although it
does not harm its own profit since it gains the difference of the
demand with the difference in the price and quality, and main-
tains the customers who have no choice but their customized
services.

8. Conclusion

This paper tackled the issue of oligopoly IaaS market that
neglects the user satisfaction and threatens the grows of the

cloud market industry. A conceptual game theoretical frame-
work with two games, namely Stackelberg and differential has
been introduced and designed to allow new and even small IaaS
providers to obtain a market share using their own strategic
advantages. The theoretically obtained results were confirmed
by experiments using real-world dataset. It was found that the
user demand from small IaaS providers increases the most when
these providers provide added-value services equal to the value
offered by the existing providers. Regardless of the pricing strat-
egy (higher or equal), improving the quality and ratings of a
small and new IaaS provider increases its demands’ rate and
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profit. However, the best strategy for small IaaS providers is
to set higher price and improve the quality of their provided
added-value solutions, specifically in the early stages of devel-
opment. The reason is that service customization increases the
customer loyalty in today’s subscription cloud economy model,
where customers are free to defect anytime. Higher customer
loyalty elevates the provider’s profit and increases the quality
equilibrium. Higher level of service quality leads to a higher
user satisfaction and improves the small IaaS provider’s market
position through higher ratings. This research drew many techni-
cal, strategic and managerial insights to guide IaaS providers on
how to utilize their strengths in deciding on future opportunities
and target markets. By offering value beyond simply providing
computing resources, the IaaS provider will play a strategic role
in the future of Cloud 2.0.

9. Future work and research directions

Although game theory has been applied to real problems in
different domains such as political science, biology, and engineer-
ing, the assumption that players are rational and have common
knowledge so they aim at maximizing profit and minimizing cost
is not always practical as shown by some experimental stud-
ies [42]. These experimental proposals demonstrated that in some
cases, players consider in their decision-making other preferences
than simply maximizing profits, for instance psychological, ideo-
logical, societal, or environmental preferences. Behavioral game
theory deals with this type of problems and tries to explain
decision making using experimental data [42].

The main purpose of our work was to theoretically analyze
the behavior of the small cloud providers to gain a share in the
market. This research is important and significant in the specific
context of cloud computing where providers care mainly about
profits and where small providers care predominantly about pure
economical attributes to gain a market share. However, proving
that our theoretical findings, supported by simulations involving
real data, match experimental choices of real cloud providers in
real settings is yet to be explored. The problem is highly challeng-
ing and will be investigated as future work. To fully investigate
the practical implication of our proposal, we will study different
cloud market players and analyze if their behavior is as expected
in theory, considering different considerations, social, political,
etc. This line of research is highly appealing as it has been demon-
strated that real players play naturally towards the equilibrium
solutions, in particular when the game is played many times so
players gain experience and understand better the game [43].

We further plan to investigate learning approaches to provide
cloud players with better mechanisms to learn (1) the behavior
of customers in order to increase their satisfaction; and (2) better
strategies to compete against different providers within our two-
stage game. Supporting and deploying mobile-edge technologies
are other directions for further research towards the future of
Cloud 2.0. We will focus in particular on two key issues: security
and computation offloading to tackle the problem of limited
computational power, storage, and energy [44,45].

In this paper, we considered the IaaS market and its spe-
cific characteristics, in particular multi-tenancy. However, multi-
tenancy in other layers is quite different and goes beyond the
infrastructure. Investigating other layers within the new vision of
value-based Cloud 2.0, such as SaaS with a high degree of multi
tenancy, higher economy of scale and different pricing models,
with different quality factors, is another challenging research
direction. Finally, we plan to study the cooperation strategies in
the context of Cloud 2.0 where the concepts of communities and
incentives to cooperate [46] will be elaborated.
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