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Abstract—In todays cloud market, providers are taking
advantage of consumer reviews and ratings as a new marketing
tool to establish their credibility. However, to achieve higher
ratings, they need to enhance their service quality which
comes with an additional cost. In this paper, we model
this conflicting situation as a Stackelberg game between a
typical service provider and multiple service users in a cloud
environment. The strategy of the service provider is to adjust
the price and IT capacity by predicting the users ratings
as well as their demands variation in response to his given
price, quality and rating. The game is solved through a
backward induction procedure using Lagrange function and
Kuhn-Tucker conditions. To evaluate the proposed model, we
performed experiments on three real world service providers
who have low, medium and high average of users’ ratings,
obtained from the Trust Feedback Dataset in the Cloud Armor
project. The results show that improvement in ratings is mostly
profitable for highly rated providers. The surprising point is
that providers having low ratings do not get much benefit from
increasing their average ratings, meanwhile, they can perform
well when they lower the service price.

Keywords-Stackelberg game, cloud service, provider profit,
user satisfaction, rating prediction, service pricing.

I. INTRODUCTION

Cloud computing has emerged as a significant promising

computing paradigm by facilitating customers access

to computing services without owning any computing

resources. The large number of services inevitably incurs

the competition among service providers that offer similar

functionality [1]. Survival for new and less famous cloud

providers in this competition is more challenging, unless

they provide high quality services and gain good reputation.

Today’s on-line market made it easy for providers to

establish their own credibility.

On-line rating systems have attracted users’ attentions

as an evaluation factor of providers’ operational premises

and their actual performance. Rating platforms enable

users to share their experience and interests with other

users in a timely fashion. Reviews and ratings, known as

digitized word-of-mouth, play an important role in the future

customers decision making. Theses ratings reflect users

satisfaction in today’s commercial world and can affect the

providers revenue largely [2].

High rating comes with a price for service providers,

since rating represents users’ benefits and not necessarily

providers’ profit. The main issue arises due to the fact that

each participating party in the cloud has its own interest.

Users want to purchase elastic and high-quality services with

minimum price. However, from the provider’s perspective,

higher quality means more cost and minimum price means

low profit. Moreover, the service price has a large effect

on users willingness to order, and quality influences users’

ratings that represent their satisfaction as a reference for

future users. Planning a suitable pricing strategy in early

stages of the service development life cycle is highly

significant since pricing may give special requirements to the

architectural design, such as scalability and customizability

[3]. The problem with the existing revenue maximization

strategies in the domain of cloud computing is that they

do not consider the impact of the users’ preferences and

priorities over the price and QoS trade-off on their demands.

This may result in considerable losses for providers in terms

of the gained revenue and for users in terms of the quality of

service. Further, it can lead to poor cloud scalability failing

providers to scale up or scale down their resources on time,

and to support their long-term and strategic needs. Failing

to meet the expected users’ demands for cloud services

can result in deficiency or large up-front investments in

infrastructure. To address these issues, this paper models the

conflicting interests and selfish actions of the participants as

a Stackelberg game. The strategy of the service provider as a

leader is to maximize his profit and, at the same time, satisfy

the users’ needs to maintain his good reputation. Meanwhile,

the service users as followers seek for less costly and high

quality services to optimize their own utility.

Contributions: The novelty of this paper lies in the

theoretical and empirical research conducted to study the

impact of on-line customers’ ratings and demand variations

on the revenue of infrastructure cloud service providers. The

main contributions can be summarized as follows:

• Assessing the profitability of user ratings on cloud

providers’ income in a competitive on-line rating

system. To the best of our knowledge, our work is the

first that presents a comprehensive study on the users’

ratings on the providers’ profit in a cloud environment.

• Enabling providers to identify influential parameters on

users demands and capturing the variations of users’

demands in response to the changes of each parameter

to enable scalability of cloud services and avoid under
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and over resources provisioning.

• Maximizing the providers’ profit through a Stackelberg

game model while adjusting the services’ price and

capacity based on the underlining users’ demand.

• Maintaining users’ satisfaction and incentivizing them

to provide good ratings for the providers.

The rest of the paper is: a brief review of related literature

in Section2, Structure and game formulation in Section 3,

methods of rating prediction in Section 4 and obtaining the

game equilibrium and best responses in Section 5;at the end

simulating results of the game is presented. For empirical

evaluation, the model is implemented using a real world

dataset obtained from the Cloud Armor project1, on three

service providers with low, medium and high rating.

II. RELATED WORK

Game theory is widely applied where the interactions

of players have to be taken into account. This cannot be

designed with the classical optimization theory, since the

players’ actions affect the other players. Game theory has

been successfully applied to address resource allocation and

Quality of Service (QoS) issues [4]. In cloud computing

it is mainly utilized to deal with resource allocation and

pricing issues [5]. As an example, a two stage provisioning

Stackelberg game is offered by Di Valerio et al. [6] for

Software as a Service (SaaS) providers who use cloud

facilities provided by an Infrastructure as a Service (IaaS)

provider. First, the SaaS providers determine the number

of required instances, then the SaaS providers compete by

bidding for the spot instances.

The perspective of the user and provider is considered by

Al Daoud et al. [7], who propose a policy to maximize the

cloud providers revenue and users utilities. The authors focus

on the pricing problem and proved the existence of a Nash

equilibrium. A very similar approach is taken by Hadji et al.

[8]. A Stackelberg game is designed to consider constrained

pricing with limited resources offered by an IaaS provider

and the optimal user demands. However, price is the only

utility factor considered for both the user and provider in

existing research; and the importance of QoS or ratings as

well as the trade-off relation between price and QoS are yet

to be investigated. It is worth mentioning that none of the

above discussed research has utilized real world datasets for

demonstration of their game applicability in real life.

A recent survey conducted by BrightLocal in November

2016, acknowledged that 84% of people trust on-line ratings

and reviews as much as personal recommendations, and

58% of consumers say that the star rating of a business is

the most important decisive factor2. Yet, there have been

few works exploring the user ratings effect on business

owners profit [2], that can be found mainly in marketing

1http://cs.adelaide.edu.au/∼cloudarmor/ds.html
2www.brightlocal.com/learn/local-consumer-review-survey/

Table I
NOTATIONS USED IN SERVICE PROVIDER-USER STACKELBERG GAME

Decision variables
xik Demand size of user i for service k
φ IT capacity/process rate of the service provider
Pk Price per unit of service k
Input parameters
i = 1, 2, ...n ∈ N Index of n users in the set N
Bi User i Budget
Rik Rating utility of service k from user i
rik Service rating of user i for service k
r̄k Average of n users’ ratings for service k
r̄i Average ratings of all the services given by user i
r̂ik Predicted rating of user i for service k
αi Price elasticity for user i
βi Rating elasticity for user i
γi Amount of service elasticity for user i
l User’s arrival rate
k, j Services (offered by two different providers)
μ Constant scale of user demand
φ IT capacity/process rate of service provider
Qk Quality of service k stated in SLA
C0k/Ck Fixed cost/marginal cost of service k
λ, λ1, λ2 Lagrange multipliers

and economic literatures. For instance, empirical studies

showed that improving book review ratings on Amazon.com

and BarnesandNoble.com tends to increase their sales [2].

In the cloud service literature, Wang et al. [9] proposed a

reputation measurement approach based on feedback ratings

to obtain the trust vector of each cloud service. Their model

generates a reputation score for cloud services and is limited

to the users who already used the service in the past, but

does not support future users. To the best of our knowledge,

this work is the first that models cloud services profitability

while considering future users ratings, where unlike classic

economic models, the main challenge is how to consider the

elasticity feature of cloud services along with QoS factors.

III. CLOUD SERVICE PROVIDER-USER STACKELBERG

GAME

We model the cloud service market interactions between

a service provider and the service users as a Stackelberg

game, where the service provider is the leader and the

service users are the followers. The users observe the price

and ratings to adjust their demand accordingly. In quest of

the users demands, the service provider makes decision on

his pricing strategy and optimal capacity. In the provider

objective model, the provider tries to comply with Service

Level Agreement (SLA) to obtain and maintain his good

rating, otherwise poor quality affects users rating and future

users demand. We assumed there is no limitation for provider

capacity, so he can increase his capacity as the demand

grows. The proposed model considers different parameters,

which are provided in Table 1.

The cloud service delivery requires provisioning an

estimated amount of the required cloud resources to satisfy

customers’ demands. A precise estimation will benefit

cloud providers with a balanced capacity and reduced cost.
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This challenging task of estimation depends on several

factors including the number of consumers, variation of

their demand, and their expected QoS [10]. Elasticity

capabilities of cloud resources enable providers to scale

their capacities and to configure provisioned resources to

take into account the user demand behavior and specified

QoS requirements for each user. In order to capture demand

elasticities and variations specific for each user, which are

fundamental aspects in cloud environments, we define the

user demand using the Cobb-Douglas function that models

well these elasticity aspects [11]. The Cobb-Douglas demand

function is continuous, convex or concave, and has constant

elasticities in relation with each input parameter. In real

world situations, a user demand depends on service price

and perceived quality. The user will have the opportunity

to check the provider rating that represents the actual user

satisfaction level of the service quality. Therefore, in addition

to the amount of service and the service price, the user rating

is considered influential in our user demand function. We

define the user demand function as follows:

Di(xik, Pk, rik) = μ xγi

ik P−αi

k rβi

ik (1)

where αi, βi and γi, i = 1, 2, ..., n are elasticities of

the service price Pk, rating rik and size xik respectively.

Different market users, having different requirements and

satisfaction levels, do not react evenly to the same price

or rating. It is the combination of these factors that

produces different values of αi, βi and γi. These values

are independent of the specific values of Pk, rik and xik,

which is an inherent property of the Cobb-Douglas function.

User demand has a negative relation with service price, and

positive relation with service rating. The user (i.e., a typical

follower) aims to maximize his payoff:

maximize UP (xik) = Di(xik, Pk, rik)− Pk

subject to Pkxik ≤ Bi

xik ≥ 0, ∀i ∈ N

(2)

The user’s objective is to maximize the demand size xik

within his budget Bi while minimizing the cost Pk. Users’

ratings that reflect their satisfaction level enhance their total

utility encoded in the demand function. Service provider

predicts the new user rating based on the given previous

ratings that is influenced by the actual service quality. The

user can only decide on the size of the demand, and price

should be obtained through the provider’s utility function.

As the cloud service provider needs to maintain his

reputation through the user ratings, he is responsible to

process users requests on time. Thus, it is important to

consider service processing rate that represents IT capacity

of the service provider, denoted as φ. A large processing

rate requires a higher IT capacity, meaning a higher cost for

φ that includes fixed cost of C0 and marginal cost of Ck.

Thus, the total cost for capacity φ is C0k + Ckφ.

Following previous literature in cloud computing [12], we

model arrival of customers as a Poisson process with mean

arrival rate l. The average delay for a customer in an M/M/1

queue can be defined as 1
φ−l . The provider is willing to

optimize his profit by maximizing the price and ratings given

by the users, and minimizing the costs. Thus, the provider

(i.e., the leader) optimization problem is:

maximize PP (Pk, φ) =
n∑

i=1

(Pk − φ Ck) D(x∗ik, Pk, rik)

+
n∑

i=1

Rik − C0k

subject to
1

φ − l
≤ Qk

φ > 0, Pk > 0, ∀i ∈ N
(3)

x∗ik is the outcome of the optimization problem Eq.2, which

corresponds to the best user’s response in terms of demand

size to the offered service price and quality. The provider

can only maintain his high records of ratings, if he offers a

service quality not less than what is stated in SLA. Thus,

based on the defined constraint, the average delay should

not be more than Qk stated in SLA.

The user ratings do not always enhance the utility of the

provider. When the provider receives a low rating, it may

have a negative effect on his payoff. To reflect that, we assign

to Rik a negative sign when the user rating is less than the

average user ratings as follows:

Rik : =

{
+Rik if r̂ik ≥ r̄k

−Rik if r̂ik < r̄k
(4)

r̂ik is the predicted rating of user i which will be calculated

in the next section.

IV. USER RATING PREDICTION

Each service has a history of user rating values that can be

used for future user ratings for other services. In this paper,

we predict the rating value of service k using a set of similar

services to service k that have been rated by the users. The

similar service neighbors are identified using the Pearson

Correlation Coefficient (PCC) measure. PCC is a common

method of similarity computation in recommender systems

that measures the extent to which two variables linearly

relate with each other. Therefore, the similarity among two

services k and j with the same functionality consumed by

user i is computed as follows:

Sim(k, j) =

∑
i∈N (rik − r̄k)(rij − r̄j)√∑

i∈N (rik − r̄k)2
√∑

i∈N (rij − r̄j)2
(5)

where r̄k and r̄j represent the average rating values of

service k and j consumed by n users. After calculating the

similarity values, it is important to select neighbors that are
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really similar to the service. Therefore, the similar neighbor

set S for service k is defined as follows:

S(k) = {j|j ∈ TK , Sim(j, k) > 0, j �= k} (6)

TK represents a set of the Top-K similar services to

service k. The identified similar service set is utilized for

rating predictions. Based on the user experience of the

similar service set, the missing rating value of service k
for user i would be:

r̂ik = r̄i +

∑
j∈S(k) Sim(k, j)(rij − r̄j)∑

j∈S(k) Sim(k, j)
(7)

Predicted rating of service k from user i will be placed as

an input for the defined function of Rik in Eq.4 to compute

the final utility for the service provider. For convenience, we

use rik to designate r̂ik or rik in the rest of the paper.

V. STACKELBERG GAME EQUILIBRIUM

We solve the equilibrium point of the above defined

Stackelberg game by a backward induction procedure.

Therefore, the followers’ (users) problem has to be solved

first to obtain the response function of these users. The

leader’s (provider) decision problem is then computed

considering all possible reactions of his followers in order

to maximize his net profit. For every possible provider’s

action, every user’s optimal reaction shall be determined by

considering the providers decisions as its input parameters.

At last, the provider identifies his optimal decision that leads

to his optimal payoff, by assuming that the users are rational

and make the optimal response to his decisions. The best

response functions are discussed in the following sections.

A. User best response

The user has to adjust the size of his demand according

to his budget for a given price. In our model, increasing

the budget is not allowed for the user. By definition, the

Cobb-Douglas function Di(xik, Pk, rik) is an increasing and

concave function of rik, so we have a positive first derivative

and a negative second derivative,

∂Di(xik, Pk, rik)

∂rik
= βiμP

−αi

k rβi−1
ik xγi

ik > 0 (8)

∂2Di(xik, Pk, rik)

∂r2ik
= βi(βi − 1)μP−αi

k rβi−2
ik xγi

ik < 0 (9)

Considering the above equations, we have 0 < βi < 1.

We can get the same range for γi, 0 < γi < 1, since the

function is increasing and concave in xik, and αi > 0.

As the objective function in Eq.2 is continuous and concave

in xik, we obtain the solution using Lagrange multipliers,

λ1 and λ2, with Kuhn-Tucker conditions. So, we will have

a new objective function:

Lup = Di(xik, Pk, rik)−Pk−λ1(xikPk−Bi)+λ2xik (10)

with the following conditions:

λ1(xikPk −Bi) = 0 (11)

λ2xik = 0 (12)

λ1, λ2, xik ≥ 0

The only coupling point between users is xik, so we take

the derivative with respect to xik.

∂LUP (xik)

∂xik
=

∂Di (xik)

∂xik
− λ1Pk + λ2 = 0 (13)

We have two cases: 1) xik = 0: regardless of the

value of λ1, λ2, this means that the user is not demanding

any services, so his utility will be zero. 2) xik > 0:

from slackness complementary condition in Eq.12 we can

conclude that λ2 = 0; so we have:

γiμx
γi−1
ik P−αi

k rβi

ik − λ1Pk = 0 (14)

xik = (
λ1P

αi+1
k

rβi

ikγiμ
)

1
γi−1 (15)

By substituting xik from Eq.15 in Eq.11 we obtain λ1:

λ1[(
λ1P

αi+1
k

rβi

ikγiμ
)

1
γi−1Pk −Bi] = 0 (16)

λ
1

γi−1

1 =
Bir

βi

ikγiμ

P
αi+1

γi−1+1

k

(17)

The final response xik from user i is attained by replacing

Eq.17 in Eq.15.

x∗ik =
Bi(r

βi

ikγiμ)
γi−2

γi−1

Pk
(18)

The above obtained x∗ik is optimal where Eq.11 slacks and

λ1 > 0. However, we claim that it is reasonable to consider

slackness rather than binding, since having λ1 = 0 is an

extreme case where the user cares only about the price and

does not consider the previous ratings or quality.

B. Cloud service provider best response

In the case of having a non zero demand for the service

provider and close values of price and cost, the provider

can only survive when he receives a high rating that can

cover his sacrificed price loss. But, if his rating is low and

he cannot set a high price, he will eventually suffer from a

loss and leave the market. Using Lagrange multiplier λ, we

model the objective optimization in Eq.3 as follows:

LPP (Pk, φ, λ) = PP (Pk, φ)− λ(
1

φ− l
−Qk) (19)

The Kuhn-Tucker condition for our model is:

∂PP (Pk, φ)

∂φ
− λ

∂( 1
φ−l −Qk)

∂φ
= 0 (20)
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∂PP (Pk, φ)

∂Pk
= 0 (21)

λ(
1

φ− l
−Qk) = 0 (22)

where λ ≥ 0, Pk, φ > 0. To find the optimal capacity φ, we

first assume that Eq.22 binds and λ > 0. Referring to Eq.20

we have:

CkDi(x
∗
ik, Pk, rik)− λ(

−1
(φ− l)2

= 0

λ = −CkDi(x
∗
ik, Pk, rik)(φ− l)2 (23)

Knowing that Ck > 0 and Di(x
∗
ik, Pk, rik) > 0, we

obtain a negative λ in Eq.23 that contradicts with the defined

constraint λ ≥ 0. Therefore, λ = 0 and Eq.22 slacks which

means the service provider should not provide the capacity

equal to satisfaction of his promised quality, it has to be

more. Any assigned capacity can be optimal as long as the

following condition holds:

φ∗ =
1

Qk
+ l + ε (24)

ε represents a very small amount. By solving Eq.21 we can

get the optimal price as follows:

∂[(Pk − φCk)Di(x
∗
ik, Pk, rik)]

∂Pk
=

(− αi

γi − 1
)Bir

βi(
−γi+1

γi−1 )

ik γ
−γi+1

γi−1

i P
−αi
γi−1−1

k −

φCk(
−αi

γi − 1
− 1)Bir

βi(
−γi+1

γi−1 )

ik γ
−γi+1

γi−1

i P
−αi
γi−1−2

k = 0

P ∗k = φCk(
αi + γi

αi + γi − 1
) (25)

Obtaining optimal response points enables us to develop

an equilibrium algorithm to solve our proposed Stackelberg

Algorithm 1 PP/UP Stackelberg Game

1: procedure INPUT: Set i = 1, 2, ..., n; αi > 0 ; 0 < γi, βi < 1;
Get Ck, C0k, rik, r̄k for service k.

2: TotalR, sum1, sum2← 0
3: for each i ∈ N do
4: Predict the rating � use Eq.7
5: if rik ≥ r̄k then
6: Rik ← rik
7: else
8: Rik ← −rik
9: end if

10: TotalR← Rik + TotalR
11: Obtain the optimal Pk � use Eq.25
12: Calculate xik � use Eq.18
13: Calculate Di � use Eq.1
14: Obtain the optimal φ � use Eq.24
15: UPi ← Di − Pk

16: sum1← sum1 + Pk ∗Di

17: sum2← sum2 + φ ∗ Ck ∗Di

18: end for
19: PP ← sum1− sum2 + TotalR− C0k

20: end procedure

game. According to Algorithm 1, the utility of predicted

rating is calculated for the service provider, then the user

demand is calculated and the final provider payoff is

obtained.

VI. SIMULATION RESULTS AND ANALYSIS

In order to evaluate our proposed Stackelberg game, we

performed our experiments on three real life cases. We

chose HostGator, Carbonite, and AceHost as our Stackelberg

leaders. They all are actual IaaS providers who offer cloud

backup and hosting services to business and individual users.

The intuition behind selecting these three providers was

their difference in average rating values that make each of

them in high, middle, and low class of ratings. This section

provides the simulation of users’ demands and assesses how

the users react to changes in the price, rating, and volume of

each service. It helps investigate how the profit obtained by

service providers in each rating class varies when the user

sensitivities towards the service volume, rating and price

change.

A. Experiment setup

As the main purpose of this experiment is to demonstrate

the reliability of the proposed Stackelberg game and

its solution algorithm, we have to set meaningful data

and reasonable game parameters. To do so, we obtained

real world data and investigated some properties of the

Cobb-Douglas function originally used in supply chain

practices [13]. We simulated 300 cloud service users for

each of the providers using real customer ratings from the

Trust Feedback Dataset, provided by Noor et. al. [14] in the

Cloud Armor project, with respect to speed and response

time. HostGator has a very good record of user ratings with

an average of ”4.72”. Afterwards, Carbonite has an average

record of user ratings ”2.58”, while AceHost has low record

of user ratings ”1.83”.

Considering the fact that users usually rate the price

according to their budgets, we scaled up the daily budget of

users based on their ratings given to the service price factor.

To obtain the process rate, we referred to the providers

promised quality in the SLA statements. For example,

Carbonite promises the minimum speed of 2 mbps, and from

this value we computed the process rate φ for a day with l=
5 requests per second that gives a reasonable response time

of 0.01. We set the constant scale of μ to 1 consistently

with previous literature [15]. Since there is no information

available about the providers’ cost, we assume that they

are renting their cloud infrastructure from Google, so the

margin cost is obtained from Google Cloud Storage that is

Ck = 0.026 monthly.

B. Rating prediction

Through the dataset, we tried to find similar services that

had ratings for the same quality factor. We identified 14
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well-known service providers such as Go Daddy, Dropbox,

and Dream host including the previously three nominated

service providers who offer similar services. The rating

prediction was conducted with a Mean Absolute Error of

1.209, and Root Mean Square Error of 1.478.

C. Pricing strategies

Service provider has to set the optimal price based

on the predicted user demand response given the offered

price. Considering possible users reactions towards the given

price can help service provider as a leader to choose

the best pricing strategy. This reactions towards changes

in demand related parameters are to be analyzed with

the defined elasticities that represents users sensitivities

by changing each parameter. As an example, βi =
∂Di(xik,Pk,rik)

∂rik
rik

Di(xik,Pk,rik)
indicates that one percentage

change in rik brings a βi percentage change in

Di(xik, Pk, rik). Figure 1 depicts the best pricing strategies

that a service providers can adopt. It is not surprising that

user rating sensitivity does not affect the optimal service

pricing, as it was found earlier in Eq.25. Meanwhile, price

reduction towards size sensitivity has to be much less than

what it has to be against price sensitivity. Since the optimal

pricing strategies of all the three providers are similar and

only differ in price reduction scale, we only provide the

figure for AceHost. From these pricing strategies, we need

to investigate how the users react in their demands and how

these strategies will ultimately enhance the provider’s profit.

D. Sensitivity analysis of rating

Let us consider the rating elasticity parameter β. What a

service provider in our Stackelberg game needs to know

is how users will respond to ratings improvement, and

how this response ultimately affects the provider’s profit.

In order to illustrate variations of demands within the user

population, box plots are provided. Figure 2 shows that

users’ demands of all three providers rise with increase of

β, but not in the same distribution. The quartiles and median

Figure 1. Pricing strategies (AceHost)

of the HostGator service demand are increasing along with

the growth of β. For Carbonite, the quartiles are increasing

but the median remains almost unchanged. This shows less

users have increased their demands. However, those who

enlarged their demands, had more variation than the users of

HostGator, whose variation is going up more than 120,000.

AceHost has a different situation. The majority of users’

demands are unchanged, while some had increased in even

more amount compared to the other two providers (more

than 150,000).

The effect of these changes are reflected in Figure 3a,

where the profits of the three providers are compared. Since

the process rate and marginal cost of HostGator are high, at

first Carbonite is better off. But after increasing β, HostGator

outperforms Carbonite. As it was expected for AceHost, the

profit has a slight improvement when β is increased.

By analyzing these results, we can conclude that users

who become customers of HostGator, mainly care about

quality and rating. So when the provider increases his

rating, he will see a dramatic increase of profit but not

early. Carbonite has almost the same situation but less

intense, so this provider can witness the increase of profit

at slower pace. Meanwhile, the users of AceHost are not

much sensitive towards rating. Therefore, rising the rating

has a minor effect on AceHost profit.

E. Sensitivity analysis of service volume

To estimate the volume of service that users obtain, we

analyzed γ. According to Figure 4, variation of user demand

distribution for service volume is almost the same as ratings.

However, very few users have lowered their demand when

they met their budget limits. Figure 3b shows the three

providers’ profit gained at a milder slope in comparison

with rating increment. This is due to the fact that only

few customers lowered their demands, specially HostGator’

customers who should pay more money. Yet, HostGator and

Carbonite have similar trend of gaining the profit out of size

increment.

F. Sensitivity analysis of price

Users react differently towards the decrease of price. As

α goes up, the price goes down. The change of price has

to be greater than the other parameters to enhance the user

demands. Figure 5 depicts the fact that users have a late

reaction towards the decrease of price, but when they start

to boost their demand, it goes up very fast. Consequently,

the three providers’ profits are more curvy with variation of

price than the other parameters, as presented in Figure 3c.

Like the case of the other two parameters, AceHost received

less increment but most intense in variation. HostGator,

Carbonite and AceHost behave similarly at the beginning,

but Carbonite profit speeds up over scaling the price

reduction. This shows that medium rated providers with
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a) HostGator b) Carbonite c) AceHost

Figure 2. Demand variation with rating elasticity (20 different values of β [0.25-0.61]

a) User rating sensitivity b) Service volume sensitivity c) Service price sensitivity

Figure 3. Analysis of providers profit with different user sensitivities

a) HostGator b) Carbonite c) AceHost

Figure 4. Demand variation with size elasticity (20 different values of γ [0.25-0.61]

medium cost and price have better opportunity to gain user

satisfaction by cutting the service price.

In summary, it can be inferred that users react to

small changes of rating and service size, meanwhile price

deduction has to be large to affect considerably the users

demand. For providers with higher capacity and higher rating

values, the slope of profit increment will be higher than

those with less capacity and lower rating values. Although

providers with high capacity and rating obtain higher profits,

providers with low capacity and low rating may receive some

unexpected demand growth by enlarging the service size,

improving the rating values, or reducing the price.

VII. CONCLUSION

This paper introduced a Stackelberg game model between

a typical IaaS provider and the users to optimize the profit

of the service provider who operates within an on-line

rating platform. The theoretically obtained results confirmed
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a) HostGator b) Carbonite c) AceHost

Figure 5. Demand variation with price elasticity (20 different values of α [0.85-0.75]

by the game simulation on a real world dataset showed

that rating improvement is mostly influential for high rated

providers who compete with high quality providers and

attracted the users who prioritize quality in their decision

making. Improving the ratings of a low rated provider does

not increase his profit as much as it does for a medium and

high rated provider. Meanwhile, an average rated provider

takes the most advantage out of the price reduction, that can

be related to his medium cost and process rate. Lowering the

price boosted almost all the users demands greatly, but only

when it is reduced in large scale. In a nutshell, providers

with higher capacity, rating and also cost can make more

profit when the user demands increase. The main competitive

advantage of high rated providers is their service quality

that becomes most profitable by enhancing their ratings.

Providers with lower capacity, cost and rating may see some

unexpected increase of demand from some customers, but

in total they will have less demand and less profit. Yet

their main advantage is lower cost that attracts low budget

customers with continuing their price reduction. Finally, as

the competition among providers is not considered in this

paper, we intend, as future work, to design a dynamic game

that models this competition over time.
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