
1
Introduction

The most constructive approach that can be taken to
define new methodologies in a domain is that of a
comparison between the different available methods in that
domain. This valuable comparison will help create new
avenues of exploration, which could lead to determining
new opportunities.

This paper reviews and compares Agile methods,
Component-Based SE, Aspect-Oriented SD, and Mashups
as the latest four software development methods. Unlike
some other methods, these four depend almost totally on the
application domain as opposed to different forms of
computing. These approaches are also the top-four,
according to many criteria such as usage, integrity, tools
accessibility, etc. That is the reason why they are considered

Since the early 80's, computer software scientists and
technicians have been under the impression that the
software production process consists of a set of organized
and well-defined distinct steps which resembled
Management Information Systems (MIS) production
processes which have now evolved to different forms of
advanced computing services [1]. However, the established
approaches to software development are always the subject
of continuous review. It is in this spirit of scientific review
that we examine four of the latest software development
methodologies Agile methods, Component-Based
Software Engineering (CBSE), Aspects-Oriented Software
Development (AOSD), and Mashups. We compare them
with a view to determine what kind of an approach might be
most suitable in the future. Several difficult research
questions beyond the scope of this paper have arisen that are
discussed in outline but could be pursued in more detailed
research work. We attempt to provide some analysis of these
research opportunities.

:

175

A Patel. et al.

ISSN 1330-3651

UDC/UDK 004.415

A COMPARATIVE STUDY OF AGILE, COMPONENT-BASED, ASPECT-ORIENTED AND
MASHUP SOFTWARE DEVELOPMENT METHODS

Ahmed Patel, Ali Seyfi, Mona Taghavi, Christopher Wills, Liu Na, Rodziah Latih, Sanjay Misra

This paper compares Agile Methods, Component-Based Software Engineering (CBSE), Aspect-Oriented Software Development (AOSD) and Mashups as the
four most advanced software development methods. These different approaches depend almost totally on their application domain but their usability can be
equally applied across domains. The purpose of this comparative analysis is to give a succinct and clear review of these four methodologies. Their definitions,
characteristics, advantages and disadvantages are considered and a conceptual mind-map is generated that sets out a foundation to assist in the formulation and
design of a possible new integrated software development approach. This includes supportive techniques to benefit from the examined methods' potential
advantages for cross-fertilization. It is a basis upon which new thinking may be initiated and further research stimulated in the software engineering subject field.

Keywords: agile, aspect, block-based programming, component, mashup, software development, end-user development, Web 2.0, Web 3.0

Subject review

U ovom se članku uspoređuju metode razvoja softvera (odnosno Agile
Methods, Component-Based Software Engineering CBSE, Aspect-Oriented Software Development - AOSD i Mashups), kao četiri najnaprednije metode za
razvoj softvera. Ovi različiti pristupi gotovo u potpunosti ovise o području njihove primjene, ali im je upotrebljivost jednaka u svim područjima. Cilj je ove
usporedne analize dati sažet i jasan pregled ove četiri metodologije. Razmatraju se njihove definicije, karakteristike, prednosti i nedostaci te se generira
konceptualna mapa namjera koja daje osnovu za pomoć u formulaciji i razvoju mogućeg novog integriranog pristupa za razvoj softvera. To uključuje tehnike
podrške kako bi se moguće prednosti ispitivanih metoda iskoristile za uzajamno poboljšanje. To je osnova na kojoj se može razviti novi način razmišljanja i
potaknuti daljnje istraživanje u području softverskog inženjeringa.

– prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih
-

Ključne riječi: agilan, aspekt, programiranje utemeljeno na bloku, komponenta, mashup, razvoj softvera, Web 2.0, Web 3.0

Pregledni članak

Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište
i mješovitih (mashup)

Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Tehni ki vjesnikč 19, 1(2012) 175-189,

as pillars upon which the search for a new close-optimal
approach is based. The comparison includes a description of
the approaches, their characteristics, advantages and
disadvantages. We hope that this will help enable the
generation of a conceptual mind-map and provide a useful
foundation for formulating and designing new frameworks
and integrated software development approaches with new
supportive techniques as we progress from Web 3.0 to Web
4.0 technology advocated by the World Wide Web

Consortium (W3C) .

The study of the history of Software Engineering (SE)
and its methods is beyond the scope of this work. However,
to understand the development of science and technology,
one needs to have an overview of its past to understand the
context and to evolve and further develop it. See Appendix
1.

The comparison metrics applied (as described in
Section) are designed to be self-contained and
approachable. There are numerous metrics to be taken into
account in the scientific evaluation of any methodology,
however the specified criteria in this work is much clearer
to all software experts or users of these approaches.

1)

1.1
History

1.2
Criteria used

6

1)
W3C is an international community where member organizations, full-

time staff and the contributing public work together to develop Web
standards led by Web inventor Tim Berners-Lee and Jeffrey Jaffe to lead
the Web to its full potential. http://www.w3.org/

176

A comparative study of agile, component-based, aspect-oriented and mashup software development methods

Technical Gazette 19, 1(2012), 175-189

A Patel. et al.

It is intended that this paper will act as a catalyst to new
research in the field of software engineering. It is hoped that
the results will lead the ICT community to understand the
current shortcomings of existing approaches and thus
promote the development of new innovative, integrative
and fast software development techniques, which
suitable to being used in all other fast-growing domains of
computer world.

This paper is composed as follows: Sections , , and
discuss the basics of the four methodologies respectively:

Agile Software Development, Component-Based Software
Engineering, Aspect-Oriented Software Development and
Mashups. Each methodology is introduced by specifying
the most important characteristics, advantages,
disadvantages and their practical applicability. Section
gives a comparative analytical discussion based on several
metrics that are important to researchers and developers.
Finally, in Section the overall discussion and conclusion is
presented, with indications of future research work that
would possibly interest enthusiast researchers, practitioners
and developers in the software development business as we
move from Web 3.0 to Web 4.0 technology and beyond.

The basic goals of introducing "Agile methods" in
software engineering by Martin Fowler, Jim Highsmith and
fifteen other developer [3] culminated in:

over processes and tools
over comprehensive documentation

over contract negotiation
over following a plan.

They summed-up their perspective, saying that the
"Agile movement is not anti-methodology. In fact, many of
us want to restore credibility to the word methodology. We
want to restore a balance. We embrace modelling, but not in
order to file some diagrams in a dusty corporate repository.
We embrace documentation, but not hundreds of pages of
never-maintained and rarely used tomes. We plan, but
recognize the limits of planning in a turbulent environment"
[3].

As set out above, Agile methods use an iterative
approach to specify, deploy and deliver the software and to

should be

Individuals and interactions
Working software
Customer collaboration
Responding to change

1.3
Paper outline

2.1
Agile methods definition

2 3 4
5

6

7

s
,
,

,

2

Agile Methods

The problems of the conventional Waterfall Model,
such as the low changeability of requirements, prompted
developers to adopt the Spiral Model as a more dynamic and
interactive design and development model [2]. However,
the users still needed the opportunity to be able to change a
system's requirements specification when necessary,
leading to faulty system and code production and delivery
time overruns. To overcome such problems, new software
development approaches and techniques were introduced,
Agile methods being one of them. It attempts to involve the
customer actively in the software development process life-
cycle as a key driver in order to ensure that all user
requirements are considered.

�

�

�

�

support software development while responding well to
requirements' rapid change (especially in the development
process). Therefore, by delivering the working of
the software quickly to the customer, he/she can be part of
this process immediately and recommend new
requirements which can be included in the further iterations
of the system. This will finally produce a fast-finished
overhead-reduced software development process.

Agile methods are designed to have the following
common characteristics:

In accordance with the requirements and
based on functionality, small subsystems or increments
with minimal-planning strategy are allocated from the
system. Each new release represents a new
functionality.

Afull system is delivered over at first and then
the functionality of each subsystem changes with each
new version. The "timebox" for each iteration lasts
from one to four weeks. Each timebox consists of a full
software development cycle, which is planning,
requirements capture, system design, coding, testing,
acceptance and demonstration.

This characteristic addresses the smooth
adoption of technology and requirements within the
cycle of software production.

While having a cross-functional
composition, the team is capable of perfectly
completing the work items through self-organization.
Team members are typically responsible for tasks to
meet the functionality requirements.

The team members are
strongly supposed to have daily meetings. Even if they
are not in one place, they should keep contact via voice
or video conferencing.

The team (5-9 people) works in a so
called "bullpen" to communicate and collaborate easily.

No matter what disciplines
rule the team, a representative is appointed to be part of
the team on behalf of the customer to answer the
developers' mid-iteration questions.

Primarily, the software should work.
This is the first measure to evaluate the work, and along
with the face-to-face communication, the customer's
satisfaction will increase. As a result, the
documentation will have less importance and will be
decreased.

Along with the particular tools,
production optimization techniques are applied to
improve project quality and agility [6].

portions

Incremental:

Iterative:

Emergent:

Self-organizing:

Face-to-face communication:

Single open office:

Customer representative:

Working software:

Tools and techniques:

In brief, enabling the agility of an organization in its
software development working methods is the fundamental
purpose ofAgile methods, which implies quick delivery and
accommodates changes quickly and as often as they are
required [4-5]. The proviso is to react to changing
circumstances in a timely and an orderly manner.

Mary Poppendieck [7] lists common key advantages of
some Agile methods, which can be basically considered as

2.2
Agile methods characteristics

�

�

�

�

�

�

�

�

�

2.3
Agile methods advantages

177Tehni ki vjesnikč 19, 1(2012) 175-189,

A Patel. et al.

the same for all Agile methods. These advantages together
with some other practical results from [8] are:
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Consumables such as diagrams, graphs and models that
are invaluable to the final deliverable are removed or
improved.
The system is tested early and re-factored when
necessary.
Developers are briefed what to do but not given
instructions of how to do it.
Customers' demands are fulfilled due to their close
interaction with the developing team which allows
them to change their minds.
The use of iterative development decreases the total
development cycle-time up to 75 %.
The process improves by taking past experiences,
mistakes and successes into account.
The project inventory is minimized since intermediate
accessories such as captured requirements and design
stage documents are minimized.
Adversarial relationships are avoided. Instead, work is
only done in order to deliver the best software.
Requirements support flexibility and are pulled from
demand.
The scopes can be flexibly managed.
Work-loads are highly stable.
A fixed number of developers develop a large-scale
software system, according to the high utilization of
work load.
Project management and production plans are highly
flexible to any change.
Higher quality of software resulting from earlier
feedback from the customers as a result of this close
interaction [4, 7 8].

Despite all the advantages of Agile methods as an
interesting pathway to software development, there are a
number of disadvantages that should be recognized,
namely:

It is usually difficult for programmers to understand the
cooperation of functionalities. A decent overview is
required for complex systems in order to avoid such
confusion.
Customers generally show contentment over early
deliverables but lose patience and begin to complain
about many shortfalls such as redundancies and later
iterations. The customer has to be coaxed into
providing useful feedback early and honestly.
Elssamadisy and Schalliol [9] maintain that it is
necessary for the customers to realize that software
product is like purchasing a tailor-made suit that
requires several tryouts before being satisfied with the
perfect suit.
Contrary to what is commonly understood about ease of
Agile methods, the story cards that are used for
programming are generally incomplete. In fact, weeks
of intensive work is needed to write the story cards with
a complete story comprehensively in order to develop
the associated program to a high standard. Further, the
developers should come up with a checklist of tasks to
not only finish the story, but also verify that they catch
up with these rules: to recognize weakly estimated
stories, as well as to reprioritize them.

,

2.4
Agile methods disadvantages

�

�

�

Agile methods usually lack good scalability since the
approach is following an integrative methodology.
Understanding where exactly the project stands is not
easy.
Also in management, they can handle only small and
medium-sized teams, not large ones.
Agile development requires a team of individuals with
high skills and motivation, who are not always
guaranteed to be available .[5, 8]

2.5
Agile versus plan-driven

Comparing Agile and Plan Driven methods (see Table
1) will create a neat image of the differences between the
two methodologies and clarify the principle concepts
behind the novelty ofAgile methods [10].

Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Table 1 A comparison of the principles of Agile and Plan-driven methods

Perspective Agile methods Plan-driven methods

Primary

objective
Rapid value High assurance

Developers

Agility

Knowledgeability

Collocation

Collaboration

Plan-orientation

Skills adequacy

Accessing external

knowledge

Customers

Dedication

Knowledgeability

Collocation

Collaboration

Representation

Empowering

Accessing to knowledge

Collaboration

Representation

Empowering

Requirements
Highly emerging

Rapid changing

Knowable early

Highly stable

Size
Smaller (teams and

products)

Larger (teams and

products)

Architecture
Design for current

requirements

Design for current and

predictable requirements

Refactoring Inexpensive Expensive

2.6
Agile in practice

2.7
Agile skills and trainings

.

Before and since the proposal of Agile Manifesto,
severalAgile methods have been introduced and developed,
some of which are:

by Beck, 1999, 2000
by Schwaber and Beedle, 2001

by Stapleton, 1997
by Highsmith, 2000

by Poppendiecks,
2003

byAmbler, 2002
by Cockburn, 2001

by Palmer and
Felsing, 2002

by Hunt and Thomas, 1999

Tab. 2 compares the prescriptive characteristics of the
above mentioned methods.

A majority of the practitioners believe that Agile

�

�

�

�

�

�

�

�

�

Extreme Programming (XP)
SCRUM
Dynamic Systems Development Methodology (DSDM)

Adaptive Software Development
Lean Software Development (LSD)

Agile Modeling (AM)
Crystal Methods
Feature-Driven Development (FDD)

Pragmatic Programming

178 Technical Gazette 19, 1(2012), 175-189

methods demand less training than traditional methods [5].
Pair programming, for example, helps reduce the required
training since the programmers train each other as they
develop the program. However, this training approach also
called tacit knowledge transfer is disputed by experts to be
more functional and useful than the normal explicit training.
In this way, the stress is on skill development instead of
learning the Agile methods. Self-training is what occurs
while training on how to apply Agile methods. The teams
show to be training themselves successfully.

Generally, a component is an independent software
unit, creating a system in coordination with other
components. However, some specialists define components
from totally different perspectives. Councill and Heineman
[11] focus on and believe that "a component is a
software element that conforms to a component model and
can be independently deployed and composed without
modification according to a composition standard". On the
other hand, Szyperski [12] focuses on the : "a
software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third
parties". So, the priority of CBSE is the

regarding the wide range of functionality
available throughout a software system.

Components are defined by their "requires" (inputs) and
"provides" (outputs) interfaces that are related by the
function. These components are capable of providing a
service to other client components, while they themselves
could be clients as illustrated in Fig 1. Each Interface
specifies a one-way flow of dependencies from one module
(which provides a service) to a client. Each flow implements
usable services to the clients.

However, every related pair of module and client are co-
dependent, which is, a client depends on the related module
to receive a service in a particular method, and the module is
dependent on the client to access and utilize the said services
[13].

3
Component-Based Software Engineering (CBSE)
3.1
Component definition

3.2
Component architecture and interactions

standards

characteristics

separation of
concerns

.

A comparative study of agile, component-based, aspect-oriented and mashup software development methods

1) This type of interface specifies the services
that the component provides.
This is theAPI of the component.
Specifies the method that user can call.
Denoted with a circle at the end of the line from the
component.

2) This interface shows the services that should
be provided in the system by other components.
The component will not work if the service is
unavailable.
It does not compromise that the component will be
independent or deployable.
Denoted with a semi-circle at the end of a line to the
component.

A component can also interact with other software
entities, either component-based or traditional ones, via its
interfaces. This interaction is possible with the whole
system mounted on a component infrastructure as shown in
Fig. 2.

Provides:

Requires:

�

�

�

�

�

�

A Patel. et al.

Table 2 Prescriptive characteristics [5]

Scrum XP Crystal FDD LSD, DSDM, AM

Iteration

length
4 weeks 2 weeks <4 month <2 weeks

Criteria used in

this table are not

applicable to

these methods

according to their

variety

type/parameter

nature

Team size 1–7 2–10 Variable Variable

System

criticality
Adaptable Adaptable All types Adaptable

Distributed

support
Adaptable No Yes Adaptable

Figure 1 Component interfaces

Figure 2 Component interactions

The detailed study of component's inner architecture is
beyond the scope of this paper. Each component, based on
the use, has several elements namely interface, port,
connector, attachment, role, binding. Also depending on the
applied CBSE model, the elements of the system may vary,
some of which are: objects, properties, methods, events and
facets.

The most important technical characteristics of software
components in a usage context are [14]:

Assuming architectural embedding.

Presenting each functionality via specific "incoming"
or "provides" interfaces.

Presenting parametric dependencies via "outgoing" or
"requires" interfaces.

Static dependencies.

Targeting particular component platform.

Requiring other components collaboration.

Requiring per-instance context.

In brief, Ian Sommerville tabulates the initial
characteristics of components as in Tab. 3.

3.3
Component characteristics

�

�

�

�

�

�

�

179Tehni ki vjesnikč 19, 1(2012) 175-189,

�

�

�

�

�

�

�

�

�

�

Up-front licensing fees.

Very similar to the interrelated methods in object
classes, components have several interfaces but that is not
the only distinctive difference between an object and a
component. As described by Sommerville[15], the
components are usually defined similarly as object-oriented
approach but they are basically different from objects in the
following important ways:

A class defines an
abstract data type; objects are instances of that type. A
component is not a template used to define an instance,
it is an instance.

They are installed
directly on an execution platform, not compiled into an
application program. The attributes and methods
defined in their interfaces are accessible by other
components.

Components have to
conform to some component model that constraints the
implementation, not like object classes that you can
implement in anyway.

Although
components are usually implemented using object-
oriented languages e.g. Java, implementing them in
non-object-oriented programming languages is also
possible. This is while Object classes have to follow the
rules of a particular object-oriented programming
language and generally can only interoperate with other
classes in that language.

Components
are often delivered as so that the buyer does
not have access to the implementation They are, at least
in principle, completely defined by their interface
specification. The total implementation is not visible to
component users.

There are many implemented CBSE models, such as:
: Introduced in 1993

by Microsoft, COM is a binary-interface standard for
CBSE [17]. Dynamic object creation and inter-process
communication in many programming languages are
enabled by using COM.

Linking to and
embedding documents and other objects developed by
Microsoft are allowed by OLE technology. User
interface elements can be developed and used by
developers through OLE Control eXtension (OCX).

Produced by the Object Management Group
(OMG) [18], and serving as a standard, CORBA
enables the collaboration of components which are
built using different languages and run on different
computers. This, as a matter of fact, is the support for
different platforms.

Developed by Distributed Systems Research
Group at Charles University in Prague, SOFA 2 is a
component system which provides several advanced
features: behavior specification and verification using
behavior protocols, ADL-based design, and connectors

3.6
Components versus objects

3.7
CBSE in practice

Components do not define types.

Components are deployable entities.

Components are standardized.

Components are language-independent.

Component implementations are opaque.
binary units

.

Component Object Model (COM)

Object Linking and Embedding (OLE):

Common Object Request Broker Architecture
(CORBA):

SOFA 2:

3.4
CBSE advantages

3.5
CBSE disadvantages

Modularization and the separation of functionalities as
in CBSE have always been ideal for the software designers
and developers. The advantages of using components are
rather more fascinating than using objects. Recognized by
domain experts, some of these advantages are [13, 16]:

Better markets
Confirmable license fees
Encapsulation shielding or creating transparency
Faster software delivery
Software/hardware independence
High functionality
Immediate availability and early payback
In-house software development
Lower development and maintenance costs
Lower risks of development
Performance predictability improvement
Reduced time-to-market
Reusability
Substitutability
Tracking technology trends
Upgrades regularly anticipate organization's needs.

The disadvantages of CBSE approach that users should
take into consideration are:

Constraints on functionality and efficiency
Dependence on vendor
Difficult to synchronize multiple-vendor upgrades
Difficult scalability of the system
High functionality compromises performance and
usability
Integration not always negligible due to some
incompatibilities among vendors
Less control over the growth and evolution of the
system
Less control over maintenance and upgrades
Licensing delays
Needed compromises in requirements
Possible recurring maintenance fees
Reliability of the system is often insufficient

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Component

Characteristics
Description

Standardized

Component conforms to some standardized model which

may define interfaces, metadata, documentation,

composition and deployment.

Independent

Components can be deployed without using other

particular components. When a component needs a

service, it uses the "requires" interface explicitly.

Composable

All external interactions must take place through

interfaces. Also a component must provide external

access to information about itself, such as its methods

and attributes.

Deployable

Component has to be able to operate as a standalone

entity on the model platform. The component is binary

and does not need to be compiled before being deployed.

Documented

Components have to be fully documented for the users to

decide if they are satisfactory to their needs. All

component interfaces should be syntactically and

semantically explicit.

Testable
The interface should conform to specific standards. In this

way the test approaches can also be standardized.

Table 3 Component characteristics [15]

180 Technical Gazette 19, 1(2012), 175-189

supporting and using various communication styles,
and finally enabling application transparent
distribution.

Nowadays, there are many large scale, complex,
distributed systems, all of them dealing with many

such as security, auditing, logging, consistency,
synchronization, error handling, timing constraints, user-
interface and etc. These that affect each other are
called and due to their
interrelationships cannot be well modularized using Object
Oriented languages. The original idea of AOSD is to
modularize these Two main
problems caused by are:

(one concern in many modules): This is
when a concern exists in many places and leads to
repeated code in the program.

(one module with many concerns): This
is when a unit of decomposition carries out multiple
tasks making it difficult to see what it is exactly doing.

4
Aspect Oriented Software Development
4.1
Aspect definition

concerns,

concerns
crosscutting concerns

crosscutting concerns.
crosscutting concerns

Code scattering

Code tangling

�

�

The basis for AOSD technique was first presented by
XEROX Corp [19] who found several programming and
software developmental process problems where both
procedural and object-oriented programming techniques
were weak to sufficiently and clearly capture many of the
major design decisions that the program must implement.
This was the reason for those design decisions to be
implemented in a scattered way throughout the code,
resulting in tangled code, which was excessively tedious to
develop and maintain. Hence, AOSD assisted by including
the appropriate isolation followed by composition and reuse
of the specified aspect code in order to express the programs
involving such aspects with clarity.

“AOSD is an approach to software development that
combines generative and component–based development"
[15]. Main concerns in a program are identified and
implemented as aspects. They are then weaved into the
appropriate places in the program by a weaver which is the
compiler (or interpreter) of an Aspect language. Fig. 3
illustrates the conversion of an Object Oriented program to
Aspect Oriented and how a concern is modularized.

A comparative study of agile, component-based, aspect-oriented and mashup software development methods

4.2
AOSD extensions

4.3
AOSD characteristics

The result of emerging the idea of AOSD was the
evolvement of several related concepts, all based on the
Aspect-Oriented infrastructure, such as:

Identify, specify and represent main properties at the
requirement level. Examples: real-time constraints,
security, and mobility. These mentioned properties
broadly affect other architecture components.

Specify and characterize the system structure and
behavior. Scattered and tangled can be
modularized.

Localize and specify main architectural level
which cannot be modularized by using conventional
architectural abstractions. Explicit mechanisms are
proposed by specific system architecture languages to
identify, specify and evaluate aspects at this level.
Aspect-Oriented Programming (AOP):
Specific programming tools and techniques to support
modularization during the implementation
phase.

As a young methodology for software development,
AOSD has the following mentioned characteristics. The
ones that are considered as advantages or disadvantages to
this approach are listed in the following two sections.

Aspects have a pre-definition of to be included in
a software system.
AOSD allows the designers/implementers/users to
understand each element of the system by knowing
its concern and without the need to understand other
elements. Therefore, any required changes are
localized to specific elements [15].

allows the programmer to code the
desired unitary statements separately, having effect on
many non-local parts of the system In other words,
Aspects can crosscut any number of components,
simultaneously.

is that the abovementioned
quantifications are applicable to any place in the
system, not necessarily prepared for them as
enhancements. Therefore, there is no need for the
components to be aware of those aspects crosscutting
them and also there is no need for extra effort from
programmers to implement any functionality [20-21].

is the distinction between
components and aspects [20]. This dichotomy, along
with separation of concerns and modularity, results in:

�

�

�

�

�

�

�

�

�

Aspect-Oriented Requirement Engineering:

Aspect-Oriented Modeling and Design:

concerns

Aspect-Oriented System Architecture:
concerns,

concerns

where

only

Quantification

Obliviousness

Aspect-Based dichotomy

.

�

�

�

�

Decomposition of the system into components and
Aspects.
Modularization of crosscutting concerns by
Aspects.
Modularization of non-crosscutting concerns by
components.
Explicit representation ofAspects, apart from other
aspects and components.

A Patel. et al.

Figure 3 Modularizing system concerns

181Tehni ki vjesnikč 19, 1(2012) 175-189,

�

�

�

�

�

�

�

JBoss Application Server (JBoss AS):

Motorola wi4:

Siemens Soarian:

ASML:

Glassbox:

.NET 3.5:

MySQL:

reusable components

This is an open-
source JAS with support for Java EE. JBoss AOP
language is integrated in the core of JBoss AS and
services such as security and transaction management
are offered and deployed by theAOP.

As a cellular infrastructure system, wi4
supports the WiMAX wireless broadband standard. The
software that controls wi4 is implemented using
WEAVER, which is an extension to the UML 2.0
standard and is used in the testing and debugging
stages.

A health information system which
supports access to the medical records of patients
seamlessly as well as to the workflows definition for
health providing organizations. Using AspectJ, Soarian
integrates some crosscutting concerns and features.

A lithography systems provider for the
semiconductor industry.

An agent for troubleshooting of Java
applications, which supports the automatic diagnosis
for common problems. The Glassbox inspector uses
AspectJ to monitor the activities of the Java virtual
machine.

Supports the concepts of AOSD through the
"unity container" which is a tool for dependency
injection in order to boost the design and
implementation stages as well as testing and
administration of applications.

A widely used relational DBMS, the logging
feature in which is totally implemented using AspectJ
[24].

In Web development, a Mashup is a Web application, a
Web page or even desktop application which performs a
service by combining functionality or even data from two or
more external sources. As its name implies, "Mashup"
usually uses data sources and open APIs (Application
Programming Interfaces) to follow a rapid and easy
integrative approach to produce outputs that were not the
principle goal of the system making the initial source data.
As a very good model to understand what Mashups are, we
can refer to the development history of existing computers.
Current operating systems are using a combinative
collection of each providing APIs for
developers to build their desired applications and several
interfaces as well, such as mouse and keyboard. Other
possible APIs might be made to access the file system,
display or network (see Fig. 4).

5

Mashup
5.1
Mashup definition

4.4
AOSD advantages

4.5
AOSD disadvantages

,
The advantages of the application ofAOSD that make it

reasonable enough to be applied are [15, 22 23]:
Support for separation of concerns
Solving scattering and tangling code problem
Asystem concerns is treated in one place
Changes are easily made
Evolving requirements and functionalities can be easily
adopted without major changes
Support for on-demand computing (of configurable
components)
Capability of unifying the concerns (crosscutting) of
non-functional features e.g. verification
Support for code reuse
Access control
Modularity
Uniformity
Non-invasiveness
Extensibility
Transparency
Reusability
Flexibility, reusability and adaptability of all the
elements that compose the system.

The main limitations and drawbacks ofAOSD are:
Young paradigm; there are as yet not enough proven
tools and languages.
Inspecting and deriving tests, which highly limit the
usage ofAOSD in large software projects.
Lack of system test coverage tools to assess the
dimensions of testing. This is because the aspects
cannot be tested in isolation. They are tightly integrated
with the base code of the system and may be woven into
different places of the program with different reactions.
To make sure, their function should be tested at any
joint point of the program.
Sequential top-down code reading is impossible. This
makes Aspect-Oriented programs difficult for humans
to understand [15, 22].

Although AOSD is a young paradigm and still under
development, several major industrial projects have been
implemented usingAOSD concepts:

Used by Sun Microsystems, AspectJ
streamlines mobile application deployment for the Java
ME. In order to simplify the mobile applications'
development for different mobile-gaming community
interfaces and operator decks, the use of Aspects seems
inevitable.

As a JAS
(Java Application Server) with support for Web
Services and Java EE, WAS is distributed in different
editions, each of which supporting specific features. In
order to isolate each edition's different features, it uses
AspectJ internally.

As a Java object-to-relational
persistence framework, and combined with the SAS
(Spring Application Server), TopLink uses Spring AOP
to achieve high levels of transparency.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4.6
AOSD in practice

AspectJ:

IBM Websphere Application Server (WAS):

Oracle TopLink:

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Figure 4 An application via APIs

As an analogy to the operating system concept, since
the coming of the Internet, new generic APIs have been

introduced, allowing for rapid programming and
development through the middleware which supports
internetworking. Several companies are currently providing
theseAPIs with the help of this middleware (see Fig. 5).

Google, Yahoo, Amazon and eBay [25-28] are good
examples of these companies with their famous APIs, each
of which are used to carry out the specified tasks, for
example, following maps, reading news, sale and
purchasing publications and ecommerce respectively. So,
all of these companies put their specificAPIs on the internet
for the developers to access and combine in order to make
theirs.

182 Technical Gazette 19, 1(2012), 175-189

�

�

�

�

�

�

�

Web-based:

Server-based:

Data Retrieval:

Source Modeling:

Data Cleaning:

Data Integration:

Data Visualization:

Generally, the data are combined and
reformatted on the user's Web browser.

The data are analyzed and reformatted
on a remote server and then the final form output is
transmitted to the user's browser.

Previously, the use of Mashups required the
implementers to have an expertise in programming
languages, specially Web programming, resulting in the
construction process having five main procedural steps and
shown on the left hand side in Fig 6 [30]:

Involves data extraction from Web
sources like XML.

Assigning attribute name to each of
data columns. Therefore existing data sources can be
related to a new data source.

Required to fix misspelling and
transform extracted data into an appropriate format.

Applied on extracted data to make it
displayable.

The step of data display.

5.3
Mashing up

.

A comparative study of agile, component-based, aspect-oriented and mashup software development methods

However, by virtue of newly released drag-and-drop
Mashup tools such as Microsoft Popfly [31] and Yahoo!
Pipes [32], these steps have been summed to

and
(as shown in Figure 6 on the right hand

side) which eased Mashup programming into the realm of
non-programmers. For ease of access to data and fast
computation, transformation from the specific to the
generic and vice versa is necessary when handling data in a
multi-mode service-oriented environment. We can add data
from specific legacy systems, such as old databases or old
versions of software, and them to be generic such
that they can be readily used by all applications without
further conversion. The opposite is also true. This reduces
data access and computation time.

Fig. 7 illustrates the primary steps in Mashup
production. Data flow and control flow are indicated by
dotted arrows and solid arrows respectively. Also the
process steps (or developer activities) are shown by the
smooth edged rectangular boxes.

Data Source
Selection, Customization, Connection, Conversion
Data Visualization

generalize

5.4
Mashup production process

A Patel. et al.

Figure 5 A Mashup via APIs

Assume that we want to make an API which, for
example, informs us about the events that take place in our
neighborhood area. Therefore, we access the Google Maps
API and events databaseAPI, put them together and obtain a
map that shows where each of the events is taking place in
our zip postal code. In this case, the developer can takeAPIs
from several Websites and merge or them together in
order to innovatively create a remarkable new application
that did not exist before on the Web; this is a Mashup. Today
more APIs are created on the internet which results in
development of more Mashups using these differentAPIs.

Mash Maker developed by the Intel Corporation is a
good example of rapid advances in the Mashup field, which
is intended for use by the ICT masses [29]. In terms of
aesthetics and innovation, it is highly conceptual and
creative as well as functionally radical in the new ways of
browsing the Web through Web technologies and the
supporting middleware. The Mash Maker philosophy is
simple and catchy: its approach is presumed to be natural
and simple. Therefore personalizing and creating
integrated meta application using Mashup development

are realized faster, more easily and are immediately usable.
Mash Maker's built-in technology provides individuals with
the possibility to browse the contexts, understand the
semantics and visualize or present the information in the
way they feel comfortable with, by controlling, tailoring
and customizing the layout. That is made possible by
allowing content from several sources such as Web, maps,
photos, videos, RSS feeds, and displays to be combined in
one place. It provides tools that let you manipulate, save
items as favorites, edit, sort, merge, annotate and share
Mashups with friends or with social network sites. This
enabling technology in effect gives it the beauty to
personalize and deliver information at an instant with the
proviso of allowing people's areas of interests, preferences
and fancy to be adapted.

There are two categories of Mashups from the
architectural point of view:

mash

" "

5.2
Mashup architecture

Figure 6 Steps in making Mashups

183Tehni ki vjesnikč 19, 1(2012) 175-189,

5.5
Mashup themes

5.6
Mashup types

5.7
Mashup advantages

Mashups usually fall under two themes due to research
and practice:

Where they are built to meet a
particular need such as in:
Enterprise information integration
Map synthesis
Web service tracking.

Where end-user
programmers (non-professional programmers) are able
to use programming techniques to accomplish their task
goals. Flexibility of the provided support is the most
important issue in EUP systems. Since customization is
unavoidable for an end-user to complete the desired
task, therefore Mashups, due to their data-
customization nature, are considered as a type of Web
EUP [34].

There are three types of Mashups:
Where identical types of information

and media from different sources are combined into a
single representation.

Which targets the general public,
Consumer Mashups are the most commonly used type
of Mashup. This type of Mashups, unlike the data
Mashups, can combine different data types.

Enterprise Mashups gather the
data into a single unique presentation and allow for a
collaborative action between developers and
businesses. They are visually rich and secure Web
applications, exposing actionable information from
various internal and external sources. According to the
collaboration possibilities between developers and
customer proxy (in order to define business
requirements), Enterprise Mashups are suitable for

projects.

The block-based nature of making Mashups has the
following advantages for the users of this technology:

�

�

�

�

�

Information systems (IS):

End-User Programming (EUP):

Data Mashups:

Consumer Mashups:

Enterprise Mashups:

Agile Development

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Existing applications are made possible to be reused
with the help of Mashups.
High decrease of the associated application
development costs.
Professional IT skills are not necessarily required to
develop Mashups.
Rapid application development is made possible.
No approval is required from anyone if a user wants to
add anAPI to the internet.
Users' needs can be perfectly met by applications since
the users are now able to incorporate content that they
could not develop by themselves due to resource or time
constraints.

As with any other system development approach,
making Mashups has some important drawbacks:

Although the content source is usually reliable, the
problem of scalability potentially exists.
Mashup is supposed to only include Web browsing
software. Therefore, desktop applications hardly
incorporate with it.
No standard has been established for Mashup yet, and
therefore it is very difficult to create and carry out
security mechanisms.
Security is another issue of these contents, particularly
for businesses with sensitive data. They need to be
assured that the information they are incorporating is
not vulnerable.
Since service-oriented architecture (SOA) has yet to
become the basis for building most data sources, it is
not easy to draw in the information. Mashups can be
created in the absence of SOA; however they are highly
facilitated by it.
The content integrity is not constantly guaranteed.
User's control over content quality and features is not
guaranteed, as well as the constant support of the owner
of the Mashup service orAPI.

is the principle goal of both
Mashups and Portals. As an older technology, portals are
basically considered as an extension to conventional
dynamic Web applications where data content is converted
into a marked-up Web page after passing two phases:
1. Generating markup fragments.
2. Aggregating the fragments into Web pages.

According to the low level of required skills in order to
make a Mashup as well as its in-house development
characteristic, a huge number of Mashups have been made
to date. The followings are some famous Mashup making
tools in practice with a brief introduction, purpose and
approach of each:

5.8
Mashup disadvantages

5.9
Mashups versus portals

5.10
Mashup in practice

"Content aggregation"

Although Mashups and Portals have content
aggregation as their common principle goal, they have
several contrasting features as shown in Table 4 which has
been adapted from [35].

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Figure 7 Mashup production process [33]

184 Technical Gazette 19, 1(2012), 175-189

A comparative study of agile, component-based, aspect-oriented and mashup software development methods A Patel. et al.

�

�

�

�

�

Yahoo! Pipes:

Microsoft Popfly:

Marmite:

Mashmaker:
on-the-fly

IBM Mashup Center:

WaveMaker Studio,
Karma Vegemite iGoogle OpenKapow AboveAllStudio
Dapper JackBuilder aRex RSSBus

A hosted service of Mashups tool which
provides a GUI for building data Mashups in order to
aggregate Web pages, Web feeds, and many other
services.

AMashup tool which is implemented
as a visual programming environment in order to allow
end-users to develop their desired Mashups by only
connecting several blocks.

AMashup tool on a workflow basis that helps
users extract data from the Web and create applications
with the use of a dataflow architecture in which data is
processed by some operators, which are similar to Unix
pipes.

A downloaded program which integrates
into the Firefox browser by simplifying the
approach to create Mashups where contents from
several sources such as maps, RSS feeds, videos,
photos and any other Web content are combined and
displayed in one place.

Written with the non-developer in
mind, its design objective is to increase the number of
its users while limiting the complexity of what can be
built.

Some other tools to be named are:
, , , , ,
, , , and .

Criteria Portal Mashup

Classification

Older technology. Extension

to traditional Web server

model.

Using newer, loosely defined

"Web 2.0" techniques

Philosophy/

Approach

Aggregation is done by

dividing role of Web server

into two phases: markup

generation and aggregation

of markup fragments.

Using APIs (Application

Programming Interfaces)

from different content sites

to aggregate and reuse the

content in another way.

Content

dependencies

Aggregates presentation-

oriented markup fragments

such as HTML, WML

(Website Meta Language),

VXML (VoiceXML), etc.

Can operate on pure XML

content and also on

presentation-oriented

content such as HTML.

Location

dependencies

Traditionally, content

aggregation takes place on

the server.

Content aggregation takes

place either on the server or

on the client.

Aggregation

style

"Salad bar" style:

Aggregated content is

presented "side-by-side"

without overlaps.

"Melting Pot" style: Individual

content may be combined in

any manner, resulting in

arbitrarily structured hybrid

content.

Event model

Read and update event

models are defined via a

specific portlet API.

CRUD operations (the major

relational DB operations:

Create, Read, Update and

Delete) are based on REST

(Representational State

Transfer) architectural

principles, but no formal API

exists.

Relevant

standards

Portlet behavior is governed

by standards JSR 168, JSR

286 (Java Specification

Requests: Portlet

Specification 1.0 & 2.0) and

WSRP (Web Services for

Remote Portlets), although

portal page layout and

portal functionality are

undefined and vendor-

specific.

Base standards are XML

interchanged as REST or Web

Services. RSS (Really Simple

Syndication) and Atom (Atom

Syndication Format & Atom

Publishing Protocol) are

commonly used. More

specific Mashup standards

are expected to emerge.

Table 4 Mashups versus Portals

5.11
Historical timeline of mashups

Fig. 8 demonstrates the history of Mashup tools based
on a timeline [36-37]. As observed from this figure, while
the momentum of Mashups has subsided to some extent
since 2007, market share consolidation has taken place
between 2008 to date.

Figure 8 Development of Mashup tools timeline

6
Comparisons

" "

.

The processes of the discussed approaches are all
traditional steps that are taken in software engineering.
These actions are carried out by a human, or in some cases
by automation tools, such as CASE or its extensions [38].
Now we will compare the four software development
approaches from the human elements involved in the life-
cycle of each, in terms of the following:

Requirements capture
System design specification
Programming, testing & debugging
System (program) integration
Documentation
Program maintenance

Tab. 6 merely summarizes the result of the metric
comparison between the four approaches. As can be seen
from this table, there is a huge number of metric attributes or
parameters involved in software development life cycles.
We use the following terminology and grading scheme in
compiling the table:

The grades , , , and
refer to metrics related to required human

effort, both physically and mentally. Not in all cases all
of these grades appear but their ranking remains the
same as stated.
The grades , , , and

refer to metrics that indicate the quality,
quantity or possibility.
The grades and refer to metrics that indicate a
possibility, occurrence or existence.
The grade indicates .

Tab. 5 is the key to the terms used in Tab. 6, giving the
value of the weights in a percentile format. Note that some
metrics are beneficial, while the others are known to be
risky. These two types of metrics are shown as different
categories in Tab. 6 and should be interpreted differently
according to their relevant keys given in Tab. 5. Also note
that, although a 'Yes' could be interpreted to be worth 100
points in some cases, according to the comparative nature of
Tab. 6, 10 suffices as its weight. An example of this is

�

�

�

�

�

�

�

�

�

�

'Very Easy' 'Easy' 'Medium' 'Hard'
'Very Hard'

'Very Low' 'Low' 'Medium' 'High',
'Very High'

'Yes' 'No'

'N/A' 'Not Applicable'

185Tehni ki vjesnikč 19, 1(2012) 175-189,

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

“predictability" which might have a range of possibility but
we preferred to give it aYes/No weight.

Table 5 Weights used for keys in Tab. 6

Benefits

(Terms used)

Percentile

points

Risks

(Terms used)

Very Easy, Very High 100 Very Easy, Very Low

Easy, High 80 Easy, Low

Medium 60 Medium

Hard, Low 40 Hard, High

Very Hard, Very Low 20 Very Hard, Very High

Yes 10 Yes

No 5 No

N/A 0 N/A

The total weight of each software development method
is calculated and shown in the last row of Tab. 6. CBSE
seems to have the most weight compared to the others, and
therefore we assume that it has the highest uptake in usage,
which appears to be the trend at present. Agile methods still
seem to need more concentration and improvement since
they have the lowest total weight compared to the others. In
between, come the AOSD and Mashup competing each
other in benefits and drawbacks but highly different in the
development process cycle. The maximum possible total
weight for each method is 3600. Fig. 9 gives a graphical
representation of the results of this study.

Although Mashup is evolving to become an
"integrator", it still has several insufficiencies that cannot be
ignored. This is because in any aspect of computer science,
the approaches that are undocumented and need low level of
skills have always been debated. Substitutability is another
significant strength which the other three methodologies
have, but Mashup lacks [39]. Not being licensed along with
software dependency are other limitations that can however
be overlooked by the impact of very high functionality.
These issues must be dealt with, in the long run.

From Tab. 6 we select a few attributes to give a brief
discussion of the comparison:

The inspection
of system requirements is the most significant starting
point of any software project and plays a key role in the
assessment of any software development approach.
Agile methods enable the dynamic capture of system
requirement through the continuing involvement of the
users. However, in the case of CBSE and AOSD,
requirements should be best captured, especially for the
input/output interfaces of the components at the outset.
On the other hand, the intended simplicity of Mashup
structures and their programming bestows the
developers with the unnecessary time-consuming
requirement capturing stage.

Agile methods contradict most of the
pre -produc t ion pr inc ip les of p lan-dr iven
methodologies. This is what makes a medium rated
system design, in contrast with the modularized
concepts of the other three approaches.

As described in the related section
about Agile methods, the systems developed are
supposed to include a new functionality with each
increment. Therefore, the final system is presumed to
cover all the desired functionalities. The modularized
or function-based nature of CBSE gives this approach
the support of a high range of functionalities, each of

�

�

�

Requirements inspection and capture:

Design quality:

Functionality:

Table 6 Comparison of software development methods

Approaches
Agile

Methods
CBSE AOSD Mashup

Metrics Benefits

Requirements inspection

& capture
Easy Hard Hard Very Easy

Project management Hard Hard Medium Easy

Functionality High High Medium Very High

Design quality Medium High High High

In-house development No Yes No Yes

Development speed Medium High Medium High

Schedule-ability Medium High High N/A

Documentation Yes Yes Yes No

Testing (Basic) Easy Easy Easy Easy

Testing (Integrated) Medium Easy Hard Easy

Assessability Medium Easy Hard Easy

Maintainability Medium High Medium Low

Learning Easy Medium Hard Very Easy

Self contained N/A Yes Yes N/A

Structurability (Control

flow)
Low High High Medium

Structurability (Data) Medium High High High

Encapsulation No Yes Yes No

Modularity Low High High N/A

Reusability Very Low Very High Medium High

Substitutability Medium High High No

Predictability No Yes Yes Yes

Reliability Medium Medium Medium High

Efficiency High Medium High High

Integrity N/A High Medium High

Commonality Low High High High

Standardability No Yes Yes Yes

Interoperability Medium High High Medium

Portability Low High High High

Scalability Very Low Low Medium Medium

Self descriptiveness Low High High High

Expressiveness Medium Medium High High

Language independency Yes No No No

Augment-ability Medium High High Medium

Flexibility Low High High Medium

Composability N/A Yes Yes Yes

Satisfaction High High High Very High

Software independency Yes Yes Yes No

Hardware independency Yes Yes Yes Yes

Profitability Medium High High Low

Risks

Development costs Medium Low Low Very Low

Maintenance costs High Low Medium Low

Complexity Medium Low High Low

Skill sets Medium High Very High Low

Risks High Low Low Low

Up-front licensing fees N/A Medium High N/A

Total Weight 1820 2655 2210 2475

which is included in one of the components added to the
whole body of the software. However, the separation of
crosscutting concerns and the complexity of the
systems built on AOSD concepts are what constraint
the functionality of the resulted system. This kind of
complexities and constraints do not appear in Mashups,
and they usually seem to have a very high and close to
expected functionality.

The name says it all,
Agile methods are used for speedy development. This is
in contrast to CBSE, in which the components are
designed and implemented before and are plugged into
the system. That is what gives CBSE the highest
development speed at a low cost. For AOSD, the

� Development speed and costs:

186 Technical Gazette 19, 1(2012), 175-189

A comparative study of agile, component-based, aspect-oriented and mashup software development methods A Patel. et al.

weaving of the components and aspects seems to be
more time consuming. In house development and no
need for high skills are the hands to help Mashups to be
developed fast and cheaply.

Principally, the Agile methods are
supposed to have a very low amount of documentation.
For CBSE and AOSD the document is initially for the
description of components and their interfaces.
However, after joining and weaving the part of the
system, a new document should be released to explain
the resulted functionalities. In Mashups, the document
is not needed, unless there have been various interfaces
and functionalities.

Running the tests for block-based approaches
are easier and usually of less complexity. However,
testing the integrative systems of AOSD is a bit of
challenge since the functionality of all the components
and aspects should be tested singly as well as in all join
points. For the Agile methods, the progressive addition
of increments might result in the need for a complicated
test scenario.

Due to change of needs, the further
changes into a software system are evidently inevitable.
CBSE approach enables the system to become highly
maintainable in terms of accepting changes. Again, for
Agile methods, due to their incremental basis,
maintainability can be a challenge. How a particular
aspect of a system behaves in a specific join point can
be a concern when making further changes in an AOSD
system. Finally, Mashups are slightly maintainable due
to their use of pre-implementedAPIs or Mashups.

�

�

�

Documentation:

Testing:

Maintainability:

Figure 9 Total weight of software development methods
in percentile format

7
Overall Discussion and Conclusions
7.1
Discussion

The concepts and characteristics presented in this paper
are mainly conceptual in nature but they do have a strong
influence on software development circles. In fact,
accomplished software engineers in the field of software
development around the world were impressed by the early
ideas behind theAgile manifesto [40]. It acted like a magnet
to return-to-origin, which resulted in a new research tide
among visionaries, developers, scientist and researchers in
the software industry, research laboratories and academia.

In summary, it can be observed that the software
development "mind-map" is a complicated process in itself,
with many factors involved in determining the definition,
characteristics, advantages and disadvantages of each
approach. The selection of any one approach is heavily
dependent on the characteristics which embody that
development and application domain which uses it. Thus, it
will be fool-hardy to suggest that one approach is the "best"
amongst them because of the differing characteristics and
application domains. It is certain that selecting and
generalizing one of these software development approaches
as the most suitable one will be an impractical idea since
each of them has so many potential advantages befitting
particular applications and development methods.

However, undertaking this complicated comparison
does indicate that given the latest technologies and tools for
supporting domains like social networking and integrated
user organizers over multiple heterogeneous resources and
services, a new "all-encompassing" innovative approach
would be an appropriate way to go. This might entail the
combination of different approaches to synthesize the
requirements and unify the ease and rapid delivery of the
development.

We can conclude by stating that "one size does not fit
all". Obviously, each of the methods discussed has its
adherents as a function of the differing attributes of each
approach. Only a cursory inspection of the costly elements
such as training, stability, learning, etc. is all that is required
to reveal that the initial development of a system based on
any of the approaches is cheaper than its maintenance over
time.

With the ever-growing need for faster development of
applications and other systems software, there is the need to
reduce the required programming skills by easing the
programming paradigms. For instance, Mashups rely on
data integration from different sources, requiring both
Mashup tools to allow seamless integration and sufficient
skills by end users as developers to easily make meta
applications. But at present all the Mashup tools lack easy-
to-use facilities and services, and the end users lack the
necessary skills to successfully exploit Mashup
development technology as a method. This is one of the
main causes of discontinuation of some Mashup tools, for
example Microsoft Popfly. End-user development as a
paradigm is called e also referred to
as , is beyond the scope of
this paper but worth noting as an emerging technological
solution, especially when it comes to discussing the
commercial opportunities that are provided by Mashups.

We are currently undertaking research on block-based
programming. BBP is based on the principles and dynamics
of combining component-based programming approach
with end-user programming paradigm that is viewed to be
more complete and easier to use in practice. In this research
study the new characteristics of Web 3.0 are considerably
leaning towards more advanced software development
methods. Web 3.0, where the computers are generating new
information as well as the humans, embodies Mashup as one
of its services. Web 4.0 with the development and evolution
of the semantic Web are likely to demand better and smarted
development approaches. This sort of integrated services,
compared to those of Web 1.0 and 2.0, makes the new Web

7.2
Conclusion

nd-user programming,
Block-Based Programming(BBP)

187Tehni ki vjesnikč 19, 1(2012) 175-189,

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

technology more flexible and helps experts innovate and
introduce new software engineering and development
methods, as is the case with BBP.

Also, the idea of introducing a new concept called
"outsourcing maintenance and management" seems
interesting; the evolution of a system with the characteristic
of "self-producing" code from a formal method. The next
idea can be possibly providing aids for "self-testing", "self-
documenting" and "self-maintaining", thus "self-
managing" of the entire software life-cycle. These concepts
should be all based on "autonomic computing" fundamental
principles.

Although there are already some early indicative
combinative models, such as Agile Mashup and Mashup as
a Service (MaaS), the opportunities of conceptualizing and
designing new approaches are still open. It also appears that
MaaS will most probably be overtaken by new forms of
application and data integration as well as "curried" Mashup
with much richer gravy. It should also be noted that for
example, by using Aspect-Oriented Programming,
Components can be made and put together to makeAPIs for
richer Mashups that are most suitable to be put into practice
in the Agile methodology domain. Studying these
possibilities is an exciting research challenge for future
R&D work.

8
References

[1] Patel,A. Seyfi,A. Tew Y. Jaradat A. Comparative Study &
Review of Grid, Cloud, Utility Computing & Software as a
Service for Use by Libraries Library Hi Tech News Journal,
Print Published 28, 3, 06-May-2011.

[2] Pressman, R. S. Software Engineering: A Practitioner's
Approach, 6 ed., 2005.

[3] Beck, K. et al. Manifesto for Agile Software Development.
Available: http://www.agilemanifesto.org/(2001, 20
November 2010)

[4] Highsmith, J. et al. Extreme Programming E-Business
Application Delivery, ed, 2000 pp. 4-17.

[5] Cohen, D. et al. An Introduction to Agile Methods
Advances in Computers 62, ed: Elsevier, 2004, pp. 1-66. doi:
10.1016/S0065-2458(03)62001-2

[6] Lindvall, M. et al. Empirical Findings in Agile Methods,
2002, pp. 81-92. doi: 10.1007/3-540-45672-4_19

[7] Poppendieck M. Lean programming http://agilealliance.
org/show/783 (2001, 28 September 2010)

[8] Sanjay A. V. Overview of Agile Management &
Development http://www.projectperfect.com.au/info_agile_
programming.php (2005, 25 October 2010).

[9] Elssamadisy A. Schalliol, G. Recognizing and Responding
to "Bad Smells" in Extreme Programming Proceedings of
the 24th International Conference on Software Engineering,
Orlando, Florida, 2002.

[10] Boehm, B. Get Ready for Agile Methods, with Care,
Computer, 35, pp. 64-69.

[11] Councill B. Heineman, G. T. Definition of a Software
Component and Its Elements Component-Based Software
Engineering: Putting the Pieces Together, ed Boston:
Addison-Wesley Longman Publishing Co., Inc., 2001, pp. 5-
19.

[12] Szyperski, C. Component Software: Beyond Object-Oriented
Programming: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[13] Bachmann, F. et al. Volume II: Technical Concepts of
Component-Based Software Engineering, Software
Engineering Institute, Carnegie Mellon University
CMU/SEI-2000-TR-008, 2000.

; ; , ; ,

. //
,

. //
,

. //
,

, ,

,
,

, ;
. //

(2002),
, ;

. //

[14] Szyperski, C. Component technology: what, where, and how?
Proceedings of the 25th International Conference on

Software Engineering, Portland, Oregon, 2003.
[15] Sommerville, I. Software Engineering, 8 ed, 2007.
[16] Boehm B. Abts, C. COTS Integration: Plug and Pray?

IEEE Computer, 32, January 1999 pp. 135-138.
[17] Microsoft. COM: Component Object Model Technologies

http://www.microsoft.com/com (1993, 12 November 2010).
[18] O. M. Group. Common Object Request Broker Architecture

(CORBA) http://www.omg.org/corba (1991, 12 November
2010).

[19] Kiczales, G. et al. Aspect-oriented programming, ed 1997,
pp. 220-242. doi: 10.1007/BFb0053381

[20] Chavez C. v. F. G. d. Lucena, C. J. P. ATheory ofAspects for
Aspect-Oriented Software Development 7th Brazilian
Symposium on Software Engineering, 2003. doi:
10.1.1.94.2670

[21] Filman, R. E. What s Aspect-Oriented Programming,
Revisited, 2001.

[22] Schwanninger, C. et al. Encapsulating Crosscutting Concerns
in System Software Third AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software, 2004.

[23] Sharma S. Bhatia, R. Storage and Retrieval Using Aspect
Oriented Technique National Conference on Challenges &
Opportunities in Information Technology 2007.

[24] Rashid, A. et al. Aspect-Oriented Software Development in
Practice: Tales from AOSD-Europe Computer, vol. 43,
2010 pp. 19-26. doi: 10.1109/MC.2010.30

[25] Google. Google Maps http://maps.google.com (2010, 11
September 2010).

[26] Yahoo. Yahoo News http://news.yahoo.com (2010, 11
September 2010).

[27] Amazon. Amazon http://www.amazon.com (2010, 11
September 2010).

[28] eBay. eBay http://www.ebay.com (2010, 11 September
2010).

[29] Intel. Mashups for the Masses http://mashmaker.intel.com/
web/ (2010, 11 September 2010).

[30] Tuchinda, R. et al. Building Mashups by Example
Proceedings of the 13th international conference on
Intelligent user interfaces, Gran Canaria, Spain, 2008. doi:
10.1145/1378773.1378792

[31] Microsoft. Microsoft Popfly http://www.popfly.com/(2010,
11 September 2010).

[32] Yahoo. Yahoo Pipes http://pipes.yahoo.com/pipes/ (2010, 11
September 2010).

[33] Murthy, S. et al. Mash-o-matic Proceedings of the 2006
ACM symposium on Document engineering, Amsterdam,
T h e N e t h e r l a n d s , 2 0 0 6 , p p . 2 0 5 - 2 1 4 . d o i :
10.1145/1166160.1166214

[34] Zang, N. et al. Mashups: Who? What? Why? he CHI '08
extended abstracts on Human factors in computing systems,
Florence, Italy, 2008. doi: 10.1145/1358628.1358826

[35] Wikipedia. Mashup http://en.wikipedia.org/wiki/Mashup_
(web_application_hybrid) (2010, 11 September 2010).

[36] Keene C. Five Free Mashup Tools You Should Know About
http://web2.sys-con.com/node/955886 (2009, 8 October
2010).

[37] Hinchcliffe D. Assembling great software: A round-up of
e i g h t m a s h u p t o o l s h t t p : / / b l o g s . z d n e t . c o m /
Hinchcliffe/?p=63 (2006, 11 September 2010).

[38] Wikipedia. Computer Aided Software Engineering
http://en.wikipedia.org/wiki/Computer-aided_software_
engineering (2010, 11 September 2010).

[39] Patel, A. et al. A Study of Mashup as a Software Application
Development Technique with Examples from an End-user
Programming Perspective Journal of Computer Science, 6,
2010 pp. 1406-1415, doi: 10.3844/jcssp.2010.1406.1415

[40] Boehm, B. A view of 20th and 21st century software
engineering Proceedings of the 28th international
conference on Software engineering, Shanghai, China, 2006.
doi: 10.1145/1134285.1134288

//

, ; //
vol. ,

,

,

.

, ;
. // The

i

. //

, ;
. //

,

. //
,

,

,

,

,

,

. //

,

,

. //

. // T

,

, ,

,
,

,

. //
(), .

. //

.

188 Technical Gazette 19, 1(2012), 175-189

A comparative study of agile, component-based, aspect-oriented and mashup software development methods A Patel. et al.

[41] Seyfi Patel, Briefly Introduced and Comparatively
Analysed: Agile SD, Component-Based SE, Aspect-Oriented
SD and Mashups Information Technology (ITSim),
International Symposium in, Kuala Lumpur, Malaysia, 2010,
pp. 977-982. doi: 10.1109/ITSIM.2010.5561582

[42] Wirth, A Brief History of Software Engineering Annals
of the History of Computing, IEEE, vol. 30, pp. 32-39.

[43] Northover, et al. Towards a Philosophy of Software
Development: 40 Years after the Birth of Software
Engineering Journal for General Philosophy of Science,
vol. 39, pp. 85-113. doi: 10.1007/s10838-008-9068-7

[44] Yau, Position Statement: Advances and Challenges of
Software Engineering Computer Software and
Applications, COMPSAC '08 32nd Annual IEEE
I n t e r n a t i o n a l , 2 0 0 8 , p p . 1 - 9 d o i :
10.1109/COMPSAC.2008.240

, ; A.

. //

. //
(),

. //
(),

. //
,

,

A.

N.
2008

M.

2008
S. S.

APPENDIX 1

A brief bullet-form history of software engineering is
given in this Appendix as a snapshot to aid the novice
reader:

Research institutions and universities began to have
large computers available to be primarily used in
engineering, natural sciences and business.
1956 was the start point for establishment of
requirements-driven processes. U. S. and Canadian air
defense developed SAGE (Semi-Automated Ground
Environment) as the first information processing
project of the 1950's (see Figure 10).
In 1957 IBM developed FORTRAN, the first known
high level language.
In 1958 the first ALGOL was developed, followed by
its successor in 1960.

1950's:Aperiod essential to the era of computing:
�

�

�

�

Figure 10 The SAGE software development process

1960's: Era of Code-and-fix (spaghetti coding):
�

�

In 1962 the US Department of Defense specifically
issued COBOLfor business applications.
In 1960 s IBM developed PL/1 which was designed to
unify the scientific and commercial worlds.

'

�

�

�

�

�

�

�

�

�

�

�

�

�

In 1963, John McCarthy at MIT designed the first time-
sharing system, adding interactivity to batch-
processing systems.
The term was commonly used through
the mid-1960s and referred essentially to the task of
coding a computer.
In 1965 Dijkstra and Hoare published their papers on
Structured Programming and Data Structuring
declaring the programming to be a discipline, not a
craft. Their ideas highly influenced new programming
languages, particularly Pascal.
The term referring to the
disciplined & systematic approach to development &
maintenance of software, was born at a NATO-
sponsored Garmisch conference in 1968.
Dijkstra (who presented at the Garmisch conference in
1968) identified an important source of trouble in the
use of GOTO commands.
Other trends:

Much better infrastructure; non-mathematicians
could enter the field easily.
Although resulting in hard-to-maintain spaghetti
code, manageable small applications were
produced.
Universities established departments of computer
science and informatics, emphasizing on software.
Software development and product companies
were established.
Increased the number of large and mission-
oriented applications.

In 1972 David Parnas and Barbara Liskov introduced
the concepts of information hiding and abstract data
types separately, resulting in the concept

which is known to constitute the
most important contribution to SE.
Modern computing era started with the Alto in 1975
built by the Xerox PARC lab.
In 1979 Modula-2 was introduced based on the
modularization principles.
Other trends:
• Formal and Waterfall process models.
• More carefully and well organized coding, after

design and requirements engineering.
• Adding the concept of confining iterations to

successive phases.
• The in-depth analysis of "people factors" in

computer programming.

In 1980 Smalltalk was developed, followed by Object-
Pascal in 1985.
In 1985 C++ was developed, followed by Oberon in
1988.
Other trends:
• Improvement of sof tware engineer ing

productivity and scalability.
• Approaches to improve the productivity such as

object orientation, very high level languages,

"programming

software engineering ,

“modularization”

"

" "

•

•

•

•

•

1970's: Reacting to the 1960's code-and-fix
approach:

1980's: Emergence of Object-Oriented concept:

189Tehni ki vjesnikč 19, 1(2012) 175-189,

A Patel. et al. Poredbena studija metoda razvoja softvera – prilagodljivih, utemeljenih na komponentama, usmjerenih na gledište i mješovitih (mashup)

Authors' addresses

Prof. Dr.

Mr.

Miss.

Miss.

Miss.

Dr.

Prof. Dr. Sanjay Misra
Department of Computer Engineering
Atilim Uníversity, Ankara, Turkey

Ahmed Patel

Ali Seyfi

Mona Taghavi

Liu Na

Rodziah Latih

Christopher Wills

School of Computer Science
Centre of Software Technology and Management
Faculty of Information Science and Technology (FTSM)
Universiti Kebangsaan Malaysia (UKM)
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

School of Computer Science
Centre of Software Technology and Management
Faculty of Information Science and Technology (FTSM)
Universiti Kebangsaan Malaysia (UKM)
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

Department of Computer Science and Research Branch
Islamic Azad University
Tehran, Iran

School of Computer Science
Centre of Software Technology and Management
Faculty of Information Science and Technology (FTSM)
Universiti Kebangsaan Malaysia (UKM)
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

School of Computer Science
Centre of Software Technology and Management
Faculty of Information Science and Technology (FTSM)
Universiti Kebangsaan Malaysia (UKM)
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

Faculty of Science, Engineering and Computing
Kingston University
Kingston upon Thames KT1 2EE, United Kingdom

School of Computing and Information Systems

expert systems, visual programming and powerful
workstations.

1990's: Concurrent and Sequential Processes:

2000's:Agility and Value:

Major advances in software engineering since
1960's:

�

�

�

�

�

�

�

�

�

�

�

�

�

Java, a revolution in the Object-Oriented programming
languages, was introduced by Sun Microsystems in
1995.
During the late 1990's several Agile methods emerged,
such as Crystal, Adaptive Software Development,
Dynamic Systems Development, Feature Driven
Development, eXtreme Programming (XP), and
Scrum.
Other trends:
• Open source software development phenomenon

started to spread.
• The Spiral Model as a risk-driven process was

intended to support CE (concurrent engineering).

At 2000 Microsoft develops C#, with a vast support for
Object-Orientation.
Service OrientedArchitecture (SOA) and Software as a
Service (SaaS) are introduced as hot topics of software
development and computing.
The idea of the componentized software has been
developed as in CBSE.
Mashups, born in late 90's is known to be an integrative
approach to software development is widely used. In
2005, World Wide Consortium (W3C) specified a
standard language for representing ontologies on the
Web built on RDF named OWL. The latest version,
OWL 2, introduces profiles to improve scalability in
typical applications. It is considered as the starting
point of evolution of model-driven to ontology-driven
development of software called Ontology-Driven
Architecture for Software Engineering (ODASE) [40].
Since 2010, major Mashup vendors have added support
for hosted deployment based on Cloud Computing
solutions.

Software processes evolve from sequential, slow and
rigid processes (such as Spiral or Waterfall processes)
to incremental and iterative agile processes (such as
eXtreme Programming).
Software design and programming techniques, such as
object-oriented programming and model-driven
architecture.
Different software-reuse techniques, such as
component-based SD and design patterns.
Numerous formal methods in order to specify, verify
and test software systems.
Software evolving architectural models, such as event-
driven architecture, service-oriented architecture and
ADL(architecture description languages) [41-44].

