
International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Authentication, Cryptography, Fiat-Shamir Protocol, Guillou-Quisquater Protocol, Java Card,
Security, Smart Cards, Zero-Knowledge Protocols

1. Introduction

User authentication is essential in many net-
worked and Internet applications. It is a process
by which a user proves his/ her identity to the
system, thus proving his/ her rights to use par-
ticular information and services. The essence
of authentication is the demonstration of either
the knowledge of a secret, the possession of a

Design and Implementation of a
Zero-Knowledge Authentication

Framework for Java Card
Ahmed Patel, Universiti Kebangsaan Malaysia, Malaysia and Kingston University, UK

Kenan Kalajdzic, Center for Computing Education, Bosnia and Herzegovina

Laleh Golafshan, Department of Computer Engineering and IT, Science and Research
Branch, Islamic Azad University, Fars, Iran

Mona Taghavi, Department of Computer, Science and Research Branch, Islamic Azad
University, Tehran, Iran

Abstract
Zero-knowledge authentication protocols are an alternative to authentication protocols based on public key
cryptography. Low processing and memory consumption make them especially suitable for implementation in
smart card microprocessors, which are severely limited in processing power and memory space. This paper
describes a design and implementation of a software library providing smart card application developers
with a reliable authentication mechanism based on well-known zero-knowledge authentication schemes. Java
Card is used as the target smart card platform implementation based on the evaluation of the Fiat-Shamir
(F-S) and Guillou-Quisquater (G-Q) protocols under various performance criteria are presented to show the
effectiveness of the implementation and that G-Q is a more efficient protocol.

physical object, or the authenticity of a certain
human body characteristic.

The most popular mechanism of user au-
thentication is the use of passwords. It is cheap
to deploy and easy to use. While suitable for
many applications, password authentication is
lacking many features necessary for security
critical applications. Badly chosen passwords
are easy to guess, can be intercepted in trans-
mission and re-used later for impersonating
legitimate users. Passwords cannot be used
directly to sign digital documents.

DOI: 10.4018/jisp.2011070101

2 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Cryptography offers better methods of
authentication, but their use is connected with
manipulating secret cryptographic keys, which
are difficult to remember. For sensible use,
cryptographic keys need to be stored in some
well-protected computing devices. For people
on the go, such a device has to be small enough
to fit into a pocket. Smart cards are probably
the most widespread device of this sort.

A Smart card is a credit card sized plastic
card with an embedded single-chip micro-
computer. The use of special manufacturing
technology makes physical tampering or prob-
ing of the microcomputer circuitry difficult,
although not completely impossible. Smart
card microcomputers are characterized by low
clock frequencies (around 1 MHz) and small
memory capacity (1-16 KB of ROM and less
than 1 KB of RAM). Thus, smart cards are
portable and small computers with different
types of memory. Java Card technology is
used in order to enable smart cards for running
small applications in secure mode for a variety
of environments, such as telephone networks
and banking industry (ORACLE, 2010; Chen,
2000) and mobile agent e-marketplaces (Wei
& Patel, 2009; Patel, 2010). Typically, it is
touched wherever authentication and security
are essential to access valuable data.

The limitations of smartcards severely
impact the choice of cryptographic techniques
available for use in smartcard applications.
Currently, only techniques based on symmetric
cryptography are in wide use. Although asym-
metric (public key) cryptography offers a richer
range of functionality, it requires more memory
space and processing power than is available in
the majority of currently available smartcards.

In the domain of authentication protocols,
an alternative to both symmetric and asymmetric
cryptography is the use of zero-knowledge proof
techniques. Zero-knowledge authentication
protocols offer same level of convenience as
authentication protocols based on asymmetric
cryptography, but require less memory space
and processing power. Zero-knowledge proto-
cols consist of two essential parts, the prover
and verifier (Kapron et al., 2007). For a more

detailed account regarding the background
and content of zero-knowledge protocol see
published paper by Vadhan (2004).

To validate practical applicability of
zero-knowledge techniques in smartcard en-
vironment, the authors developed a prototype
software library that implements a well-known
zero-knowledge authentication protocol. Java
Card specification was used as the target
smartcard platform. The results of this work
are discussed in the rest of this paper.

Section 2 gives a brief overview of smart-
card technology and related standards. Section
3 gives an introduction into zero-knowledge
proofs and zero-knowledge authentication
protocols. Thereafter, the design and imple-
mentation of a prototype library based on the
evaluated zero-knowledge protocols are dis-
cussed in Section 4 and the conclusions given
in Section 5.

2. Smartcards

A smartcard looks like a normal credit card
with a chip embedded in it. Smartcards can be
divided into three main categories according
to the capabilities of the chip:

•	 Memory cards, which can just store data
and have no data processing capabilities.

•	 Wired Logic Intelligent Memory cards,
which contain also some built-in logic,
usually used to control the access to the
memory of the card.

•	 Processor cards, which contain memory
and processor and have data processing
capabilities.

Smartcards have to communicate with
some other devices to gain access to a network.
Therefore, they can be plugged into a reader,
commonly referred to as a card terminal, or they
can operate using Radio Frequencies (RF). In
the former type of card, the connection is made
when the reader contacts a small golden chip
on front of the card whilst the latter (contact-
less card) can communicate via an antenna,

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 3

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

eliminating the need to insert and remove the
card by hand. All that is necessary to start the
interaction is to get close enough to a receiver.
Contactless cards are practical in applications in
which speed is important or in which card inser-
tion/removal may be impractical (an example
could be the Subscriber Identity Module (SIM)
cards in mobile phones). Some manufacturers
are making cards that function in both contact
and contactless mode.

All smartcards contain three types of
memory: persistent non-mutable memory,
persistent mutable memory and non-persistent
mutable memory. ROM, EEPROM and RAM
are the most widely used memories for the
three respective types in the current smartcards.

A typical processor card with contacts
has 16KB ROM, 512 bytes of RAM and an
eight-bit processor, although the technology is
moving towards 16 or 32-bit CPU (Oritz, 2003;
ORACLE, 2010).

Although smartcards are more expensive
than ordinary magnetic stripe cards, their use is
increasing because of several reasons. Firstly,
smartcards are more secure than magnetic
stripe cards. In fact, it is easy today to purchase
tools needed to hack into confidential data on
a magnetic stripe card whilst smartcards are
considered tamper resistant. However, unfor-
tunately smartcards are not as tamper resistant
as it is believed. Firstly, the technology to
read protected memory or reverse-engineer
smartcards’ CPU is relatively easy, and with the
present state of the art, they cannot resist well
planned invasive tampering like side-channel
signal pickup and differential power analysis
(Kocher et al., 1999). Secondly, processor cards

with their processing capabilities and increased
memory capacity can perform more activities
than simple magnetic stripe cards that require a
host system to store and process all data, which
make them open to tampering.

Smartcards are used to cover the personal
secure information, and it is significant that
they play a critical role in security systems.
Smartcards are the authentication devices that
are used to store secret keys because of the lack
of secure PCs. On the other hand, cryptographic
operations are done via secret key (Herbst et
al., 2006).

A. Standards

Several standards for smartcards have been
defined by International Standards Organisation
(ISO) and the International Electro-technical
Commission (IEC). The important ones are
shown in Figure 1 based on reading and writing
the data from the card, type of chips, and its
capacities as well. Here, we restrict our discus-
sion to processor cards with contacts.

1) ISO/IEC 7816

This ISO/IEC 7816 standard covers various
aspects of integrated circuit cards with electrical
contacts. It consists of the following fourteen
parts with a fifteen part numbering - minus part
14 - (International Organization for Standard-
ization, 1987):

•	 Physical characteristics (Part 1): defines the
physical dimensions of contact smartcards
and their resistance to static electricity,
electromagnetic radiation and mechanical

Figure 1. Smartcards types

4 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

stress. It also prescribes the physical loca-
tion of an embossing area.

•	 Dimension and location of the contacts
(Part 2): defines the location, purpose
and electrical characteristics of the card’s
metallic contacts.

•	 Electronic interface signals and transmis-
sion protocols (Part 3): defines the voltage
and current requirements for the electrical
contacts defined in Part 2 and asynchro-
nous half-duplex character transmission
protocol.

•	 Organisation, security and commands
for interchange (Part 4): establishes a set
of commands to provide access, security
and transmission of card data. Within the
basic kernel, for example, are commands
to verify access control, secure messaging,
read, write and update records.

•	 Registration of application provider’s
identifiers (Part 5): defines how to use
an application identifier to ascertain the
presence of and/or perform the retrieval of
an application in a card through data ele-
ments and interchange with the integrated
circuit card.

•	 Inter-industry data elements interchange
(Part 6): describes encoding rules for data
needed in many applications, e.g. name and
photograph of the owner, his/her preference
of languages, etc.

•	 Inter-industry commands for Structured
Query Language (SQL) (Part 7): describes
how to use the database paradigm in cards
through the concept of views and the stan-
dard SQL command.

•	 Commands for security operations (Part
8): to facilitate cryptographic operations,
complementing commands given in Part 4.

•	 Commands for card management (Part 9):
to facilitate card and file management, e.g.
file creation and deletion.

•	 Electronic signals and answer to reset for
synchronous cards (Part 10): specifies the
power, signal structures, and the structure
for the answer to reset between an inte-
grated circuit card(s) with synchronous

transmission and an interface device such
as a terminal.

•	 Personal verification through biometric
methods (Part 11): specifies the usage of
inter-industry commands and data objects
related to personal verification through bio-
metric methods in integrated circuit cards.

•	 Cards with contacts — USB electrical
interface and operating procedures (Part
12): specifies the operating conditions of
an integrated circuit card that provides a
USB interface.

•	 Commands for application management
in multi-application environment (Part
13): specifies commands for applica-
tion management in a multi-application
environment.

•	 No Part 14.
•	 Cryptographic information application

(Part 15): specifies a card application which
contains information on cryptographic
functionality and multiple cryptographic
algorithms.

In addition to the above, the ISO/IEC
14443 proximity card standard consists of four
parts and related amendments for smart cards
on a different physical communication support
mechanism (International Organization for
Standardization, 2000).

Figures 2 and 3 show the physical appear-
ance of a smartcard as defined in ISO7816 part 1.

Typically smartcard’s physical chip ap-
pearance in credit card or SIM dimensions has
contacts or contactless circuitry as shown in
Figure 4.

It houses the computer configuration as
shown in Figure 5.

A more comprehensive layout of the com-
puter configuration is shown in Figure 6.

It consists of:

•	 Central Processing Unit (CPU): which is
the heart of the chip

•	 Security logic: which detects abnormal
conditions such as low voltage levels

•	 Serial I/O interface: which allows contact
to the “outside” world

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 5

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 2. Physical appearance of smartcards

Figure 3.Chip appearance

Figure 4. Chip contact circuitry

Figure 5. Chip and computer configuration

6 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

•	 Test logic: which permits self-test proce-
dures to run

•	 ROM consisting of:
◦◦ card operating system
◦◦ self-test procedures
◦◦ typically 16 KBytes
◦◦ future 32/64 KBytes

•	 RAM consisting of:
◦◦ “scratch pad” of the processor
◦◦ typically 512 bytes (1/2 Kbyte)
◦◦ future 1 KByte

•	 EEPROM consisting of:
◦◦ cryptographic keys
◦◦ PIN code
◦◦ biometric template
◦◦ balance
◦◦ application code
◦◦ typically 8 or 16 KBytes
◦◦ future 32 KBytes

•	 Databus: This connects elements of the
chip on an 8 or 16 bits wide bus structure

Normally, a smartcard does not contain
a power supply, a display, or a keyboard. It
interacts with the outside world using the
serial communication interface via its eight
contact points.

The embossing area is reserved to personal-
ize the card, for embossing or laser engraving
the name of the owner, the card number or other
personal details relevant to the application in
which the card is involved.

Among other things, ISO7816 (part 4) also
defines a standard data format for interaction
between the card and the outside world called
APDU (Application Protocol Data Unit). If we

consider the communication protocol in terms
of master/slave paradigm, the card has always a
passive role, waiting for a command APDU from
the terminal in which it’s inserted. In reply to
the command, the card sends a response APDU.

2) Java Card

There is no standard smartcard programming
language today. Smartcard companies use dif-
ferent languages to develop smartcard software;
code is compiled into machine language and
embedded into the chip (Sun Microsystems,
1997). The major problem is non-portability
of smartcard software and a small universe of
knowledgeable programmers (Coleman, 1998;
Peyret, 1995).

How to overcome these problems that slow
down the adoption of smartcards in many ap-
plications? Java programming language offers
a possible solution. Java is an object-oriented
programming language that compiles into a
platform-independent byte code that can be
run on any platform providing a Java byte
code interpreter. The idea to give smartcards
developers the ability to write applications
once and have them run on all platforms led,
in November 1996, to the release of the Java
Card API Specification. One year later, with
the release of Java Card API 2.0, every major
vendor of smartcards in the world had licensed
the technology (Coleman, 1998). For these
reasons, Java Card was chosen as the target
platform for this project.

The Java Card API is a part of the small-
est virtual machine specification for Java. It

Figure 6. Chip internal circuitry

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 7

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

is designed to allow Java to run on an 8-bit
microprocessor, with 8 kilobytes of electri-
cally erasable and programmable read only
memory (EEPROM), 16 kilobytes of read only
memory (ROM), and 256 bytes of random ac-
cess memory (RAM) (Chen & Giorgio, 1998).

Java Card programs, called applets, are
small enough so that several can fit into the
small amounts of memory available on smart-
cards. Applets can be easily updated, and Java
Card functionality can therefore be continually
updated as new applications or updates become
available.

3. Zero-Knowledge
Protocols

Zero-knowledge is one of the most popular,
useful and powerful protocol in cryptographic
design which was introduced by Goldwasser
et al. (1985).

Zero-knowledge protocols, as their name
suggest, are cryptographic protocols in which
one party (the prover) can demonstrate the
knowledge of some secret to another party
(the verifier) without revealing the secret. This
way, an eavesdropper, as well as the verifier,
can gain no information about the secret and
cannot convince a third party that they know
the secret. More precisely, the properties of a
zero-knowledge protocol are as follows:

•	 The prover cannot cheat the verifier unless
the prover is extremely lucky; By reiterat-
ing the protocol, the odds of an impostor
passing as a legitimate user can be made
as minimal as necessary

•	 The verifier cannot pretend to be the
prover to any third party because during
the protocol execution the verifier gains
no knowledge of the secret

•	 The verifier cannot convince a third party
of the validity of the authentication proof

A good introduction into the field of zero-
knowledge proof and protocols is given by
Quisquater et al. (1990).

Zero-knowledge proofs that yield nothing
but their validity is a must in the methodology
of cryptographic protocol design (Goldreich,
1991). They play an important role in cryptog-
raphy and it is applicable in solving NP (type
of problems in computational theory defined
as nondeterministic polynomial time) issues
through interaction and randomness (Kapron
et al., 2007). The zero-knowledge protocol
has been used to solve different problems.
For instance, Kapron et al. (2007) presented a
new characterization of zero-knowledge pro-
tocols as Non-interactive Instance-dependent
Commitment schemes (NIC), and by this
knowledge they believed that a NIC has a
V-bit zero-knowledge protocol. Besides, with
regards to previous related works (Vadhan,
2004; Nguyen & Vadhan, 2007; Ong & Vad-
han, 2007) it is possible to prove unconditional
results about zero-knowledge protocols, which
has used zero-knowledge protocols as special
bit commitment-schemes.

A. Basic Zero-Knowledge Protocol

Let’s consider the basic operation of a zero-
knowledge protocol on the following example
taken from Schneier (1996).

Assume that the prover knows some infor-
mation, and furthermore that the information
is the solution to a hard problem. The basic
protocol consists of several rounds: what is
explained below is repeated n times.

The prover uses the information he/she
knows and a random number to transform the
hard problem into another hard problem, one
that is isomorphic to the original one. Not all
problems and transformations, of course, are
suitable for this purpose; the prover must be sure
that the verifier cannot deduce any knowledge
from the execution of the protocol, even after
many iterations of it.

Then, the prover uses the information he/
she knows and the random number to solve the
new instance of the hard problem, then com-
mits to the solution, using a bit-commitment
scheme. This kind of scheme is used when
someone wants to commit to a result but does

8 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

not want to reveal it until sometime later and,
meanwhile; the counterpart wants to make sure
that the result is not going to be changed after
the commitment.

The prover reveals the new problem in-
stance to the verifier, but the verifier cannot use
this problem to get any information about the
original instance or its solution. At this stage, the
verifier asks the prover either to prove that the
old and the new instances are isomorphic (i.e.
two different solutions to two related problems)
or to open the solution to which the prover com-
mitted before and show that it’s a solution to
the new instance. The prover complies.

In this protocol, the verifier does not get
any knowledge of the secret information and the
prover cannot cheat. Also, the verifier cannot
use a transcription of the exchange to convince
a third party that the prover knows the secret,
because the verifier cannot demonstrate that
she did not collude with the prover to build a
simulator that fakes the prover’s knowledge.

B. Which Problems can be Used
in Zero-Knowledge Protocols?

The notion of Zero-Knowledge proof was set
forward in 1985 by Goldwasser et al. (1985).
One year later Goldwasser (1986) proved that
any problem in NP class has a zero-knowledge
proof, assuming the existence of one-way
functions.

Unfortunately, not all problems in NP class
are suitable for a realistic implementation. Like
in other cryptographic protocols, the problems
most widely used in actual zero-knowledge
protocols are the following (Aronsson, 1996):

•	 the problem of finding discrete logarithms
for large natural numbers

•	 the problem of checking that y is (x2 mod
n) for some natural number x, if the factors
of n are unknown

•	 the problem of factoring a large natural
number which is a product of two or more
large primes

C. Real Zero-Knowledge
Authentication Protocols

Amos Fiat and Adi Shamir (1986) showed
how to utilize zero-knowledge proofs for au-
thentication and generating digital signatures.
Their protocol, called Fiat-Shamir, was the first
realistic zero-knowledge protocol; a number of
other protocols have been developed after this
one. This includes Feige-Fiat-Shamir (Micali
& Shamir, 1990), Guillou-Quisquater (Guillou
& Quisquater, 1988, 1990), Ohta-Okamoto
(Ohta & Okamoto, 1990), Beth (Burmester
et al., 1992), Schnorr (Schnorr, 1990), and
Burmester-Desmedt-Beth (Burmester et al.,
1992) protocols. In this paper we review only
Fiat-Shamir and Guillou-Quisquater protocols,
which are most relevant to the subject of this
paper.

1) Fiat-Shamir Protocol

A trusted process chooses and makes public a
modulus n that is the product of two large prime
numbers p and q known only to the process. The
process then generates for each user the public
key v1, v2,…,vk and the private key s1, s2,…,sk
such that si = vi

-1 (mod n).
To embed the identity of the user into her

or his public key, the trusted process prepares a
string I which contains all the relevant informa-
tion about the user. The process also chooses and
makes public a pseudo random function f which
maps arbitrary strings to the range [0,n). The
function f must be indistinguishable from a truly
random function by a polynomially bounded
computation. To generate the public key, the
process then computes a number of values v’j
= f(I,j), where j = 1,2,…,N, and I,j means con-
catenation of I with a string representing j. For
the public key, the process selects k values of
v’j for which there is a square root (modulo n).
The selected values become v1, v2,…,vk.

The proof is based on the following proto-
col (the prover is identified with P, the verifier
with V):

1. 	 P sends I to V

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2. 	 V generates k vj values using same algorithm
as the trusted process

The following steps are repeated t times:

3. 	 P selects a random number r from [0,n)
and sends V a value of x = r2 (mod n)

4. 	 V sends a random binary vector (e1, …, ek)
to P

5. 	 P sends to V: y r s nj
ej

= ⋅
=
∏ mod
1

6. 	 V checks that x y v nj
ej

= ⋅
=
∏2
1

mod

V accepts P’s proof of identity only if all
t iterations are successful.

V can get no knowledge of the secret key
from the protocol. He cannot recover the secret
values sj from the public values vj, because
the calculation of a square root modulus n is
considered computationally infeasible for large
values of n and vj.

A lucky cheater could guess the correct
vector (e1,…,ek) sending then to V:

x r v n y rj
ej

= () =
=
∏2
1

mod .and 	

However, the probability of this event is
only 2-k per iteration and 2-kt for the whole pro-
tocol. k and t can be chosen to achieve level of
security appropriate for a particular application.
A digital signature scheme was constructed on
the basis of this protocol.

2) Guillou-Quisquater Protocol

B J nv ⋅ =mod 1 	

where:

J I= ()Red 	

•	 Red (Redundancy Rule) is a published
function, or preferably standardized, that
completes I, which is half shorter than n,
to obtain J, the “shadowed identity”, that
is a number as large as n.

•	 v is an exponent, both published by the
authority and known to each verifier. v
must be relatively prime to (p-1) and (q-
1) to ease the operation of calculating the
number B for the user.

•	 n is known by everyone, but only the au-
thority knows its factorization.

The protocol requires only one round and
it consists of the steps seen in Table 1.

The strength of the protocol is in the com-
putational complexity of calculating roots of
vth power modulo n.

Any cheater, having guessed the question
d, can obviously prepare a pair of T and t by,
firstly, picking t at random in Zn and, secondly,
deducing T by computing exactly as the verifier
would do. A cheater, however, has only one
chance to guess d, which means that the level
of security is 2-|v|, where |v| is the length of v in
bits. A digital signature scheme was developed to
ascertain and verify this for Guillou-Quisquater
protocol as well as for Fiat-Shamir protocol.

D. The Chess Grandmaster
Problem

Although the idea behind zero-knowledge
proofs of identity is quite powerful, zero-knowl-
edge protocols are not perfect. The man-in-the-
middle attack, for example, cannot be avoided as
illustrated by the “Chess Grandmaster Problem”
described in Goldwasser et al. (1985).

To defeat a world championship level
grandmaster, someone (let’s call her NICE
MONA) could set up a two-room game, invit-
ing two grandmasters to play with her. Neither
grandmaster knows about the other.

NICE MONA starts the game with the
grandmaster that plays with white pieces (the
other one plays with black) so that she can see
his first move. Then NICE MONA records the
move and walks in the other room. Since NICE
MONA plays white, she makes the first move
in the game with the second grandmaster. She
simply repeats the move of the first grandmaster.
This continues, until NICE MONA wins one
game and loses the other, or both games end
in a draw.

10 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

This kind of fraud can be used against
zero-knowledge proofs of identity: while the
prover is proving her identity to the verifier,
the verifier can simultaneously prove to another
verifier that she is the prover. The only reason-
able counterattack to the man-in-the-middle
problem is imposing time limits for the replies.

4. Design and
Implementation of
an Authentication
Library for Java Card

In this section, we discuss our major design
decisions and the architecture of the authenti-
cation library for Java Card that implements a
zero-knowledge authentication protocol.

A. Evaluated Choice
of the Protocol

All public key protocols and the majority of
analysed zero-knowledge protocols suffer from
the problem of key integrity. In other words, a
key has to be bound to the identity of its owner
by means of a key certificate issued by an
authorized trusted third party. Unfortunately,
key certificates, especially those conforming to
ITU-T X.509 Recommendation (ITU-T, 2005),
are quite big and can easily take up to 1.5 to 2
Kbytes each (Meckley, 1998). Although stor-
ing such certificates inside smartcards makes
perfect sense, it is problematic due to the small
amount of memory available in modern smart-
cards. Some zero-knowledge protocols (the
identity based ones) seem to solve the problem.
In these protocols, the public key is generated
from the identity of the user, which eliminates
the need for certificates (Schneier, 2007).

Three of the well-known zero-knowledge
protocols, Fiat-Shamir, Guillou-Quisquater
and Beth, are identity based. The public key is
derived from the identity of the user via a pub-
licly known pseudo-random one-way function.
The verifier knows the function as well as the
prover and can generate the public key of the
prover from the identity of the prover.

Only the process issuing secret keys can
calculate the prover’s secret key (or keys) on
the basis of the secret information it has (in Fiat-
Shamir and Guillou-Quisquater protocols this
information are the factors of the modulus n).
The verifier has no access to this information,
thus, identity based public key generation does
not reduce the security of the protocols, while
eliminating the problem of certificates. After
secret key generation, no further interaction
with the process is required.

No interaction with the prover will enable
verifiers to reproduce prover’s secret, and even
the knowledge of the prover’s secret will not
enable adversaries to create new identities or
to modify existing ones without the help of
the key issuing process (Fiat & Shamir, 1986).

Including the serial number of the smartcard
as part of the identity ensures that if the user’s
secret is compromised, new public and secret
keys can be generated for the replacement card
(Guillou & Quisquater, 1990).

Beth’s protocol does not offer a digital
signature scheme, so we restricted our choice
of protocol to Fiat-Shamir (F-S) and Guillou-
Quisquater (G-Q).

An authentication scheme should be both
secure and efficient, so that security overhead is
minimized. Efficiency is particularly important
in the context of smartcards, whose computa-
tional power and memory are severely restricted.

As the minimum security level recom-
mended for authentication schemes is 2-20,
the theoretical performances of protocols are
compared at this level. The criteria by which we
compare these protocols are transmission cost
(the amount of transmitted data, without consid-
ering the communication overhead), number of
modular multiplication, and memory required.

Modular multiplication is one of the slowest
operations performed, taking 0.5 sec on average
using modern smartcard technology. Thus, we
approximate the processing power required
for each protocol by the number of modular
multiplications required as shown in Table 2.

The number of modular multiplications is
calculated on average for Fiat-Shamir (consid-
ering that a random vector has on average the

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

same number of ‘0’ and ‘1’), and in the worst
case for Guillou-Quisquater. Exponentiation
modulo n is approximated with 3/2•(log2expo-
nent) modular multiplications.

Table 3 shows the respective values for a
level of security 2-20, for |n| = 512.

The Guillou-Quisquater protocol mini-
mizes the communication cost and the memo-
ry cost at the price of more computations (only
3 times Fiat-Shamir), which will be acceptable
assuming the future growth of processing
power in the new generation of smartcards.

Based on Table 3, it can be seen that the
Guillou-Quisquater protocol has an effective
performance in minimizing the memory and
communication cost based on control parameter
V. Another protocol, Fiat-Shamir, is tested ac-
cording to two key parameters t and k. These
two parameters are presented by the number of
iterations of the basic protocol and the number
of secret keys, respectively. Figure 7 shows the
comparison among transmission cost, number of
modular multiplications, and memory require-
ments to measure the performance of these
protocols based on control parameters. Regard-
ing these key factors, the suitable protocol is
chosen. Although the rate of the bit transmitted
of Fait-Shamir is acceptable on average with
fewer numbers of iteration (t = 1), but the rate
of memory requirements is high. In contrast,
Guillou-Quisquater provides low memory re-
quirements in terms of length of bits are 20 and
consideration to the rate of transmitted data. It

can be seen the relation between parameters and
key factors for protocols. It is noticeable that the
t parameter is consequential in computing cost
transmission and processing power required for
Fiat-Shamir, whilst the increase of k parameter
(the number of secret key) will enhance the rate
of memory requirements.

The number of bits transmitted is consid-
ered as an important factor to choose a useful
protocol for implementation. So, for investiga-
tion of this factor, control parameters have been
tested with different values to compare two
existing protocols. As the chart shows (Figure8),
the number of bits transmitted has a significant
increase when the number of iterations of the
protocol has changed from low value to high
value for Fiat-Shamir protocol. In contrast, the
number of bits transmitted of Guillou-Quisqua-
ter protocol is computed based on the length in
bits of the public exponent.

It is noticeable that Guillou-Quisquater
protocol needs less memory in comparison with
Fiat-Shamir, basically (Figure 9). Therefore,
we chose Guillou-Quisquater protocol for
implementation in the authentication library
based on the efficiency and security of the
protocol. The performance is measured regard-
ing to key factors at 2-20 minimum security
level.

B. Operational Scenarios

The functionality for the prototype authentica-
tion library was specified as two operational

Table 1. Protocol steps

1. P transmits its identity I and a test number T which is the vth power in Zn of an integer r picked at random in Zn*
T r nv= mod

2. V asks a question d which is an integer picked at random from 0 to v-1

3. P sends a witness number t which is the product in Zn of the integer r by the dth power of the authentication
 number B

t r B nd= ⋅ mod

4. V verifies that the product of the dth power of the shadowed identity J by the vth power of witness t, it’s equal to T

J t n J r B n J B r n Td v d d v v d v⋅ = ⋅ ⋅() = ⋅() ⋅ =mod mod mod

12 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

scenarios. Given below is a summary of these
two scenarios.

1) Initialization Scenario

Actors: authentication process, user.
During initialization, the authentication

process must generate the exponent v, the
two prime numbers p and q and their product
n according to the desired security level. The
process then, on a user request, must perform
user initialization. To do so the process calcu-
lates the user public key and private key from
the user’s identity. The process generates a
Private Identification Number (PIN) for the

user as well. At the end of the initialization,
a card is issued.

2) User Authentication Scenario

Actors: user, user interface, card reader, verifier
process, Java Card applet (prover).

The user authentication scenario is shown
in Figure 10. The arrows denote the direction
of the information flow and the names on the
arrows denote the corresponding data elements.

The user enters PIN through the user in-
terface software, which starts the verification
process. The reader interface software operates
card reader hardware and provides a means for

Table 2. Evaluation of F-S and G-Q protocols under performance criteria

Fiat-Shamir Guillou-Quisquater

No. of bit transmitted t⋅ (2⋅|n| + k) 2⋅|n| + |v|

No. of modular multiplications (prover) t⋅ (k + 2)/2 3⋅|v| + 1

No. of modular multiplications (verifier) t⋅ (k + 2)/2 3⋅|v| + 1

Memory requirements k⋅|n| |n|

Security level 2-kt 2-|v|

Notation: t = the number of iterations of the basic protocol
n = the modulus
|n| = the length in bits of n (usually 512)
k = the number of secret keys
v = the public exponent
|v| = the length in bits of v

Table 3. F-S and G-Q for a 2-20 level of security (*values recommended by Fiat & Shamir, 1986)

Parameters
&
Key factors

t k No. of
bits transmitted

No. of modular
multiplications

Memory
requirements

Fiat-Shamir 1 20 1044 11 10240

Fiat-Shamir 2 10 2068 12 5120

Fiat-Shamir (*) 4 5 4116 14 2560

Fiat-Shamir 5 4 5140 20 2048

Fiat-Shamir 10 2 10260 20 1024

Fiat-Shamir 20 1 20500 30 512

Guillou-Quisquater |v| = 20 1044 61 512

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

communication between the applet, the user
interface and the verifier process. The verifica-
tion process begins by the reader communicat-
ing an authentication request (containing PIN)
to the applet. After that, the verifier and the
applet perform Guillou-Quisquater protocol as
described previously.

C. Library Implementation

The implemented prototype library consists of
five Java packages:

•	 Package applets.lib contains BigInt and
RandomBigInt classes implementing ar-
bitrary precision integer arithmetic.

•	 Package applets.Auth contains Auth class, a
JavaCard applet that implements the prover
functionality of the Guillou-Quisquater
protocol.

•	 Package verifier contains the Verifier class
that starts a daemon process servicing au-
thentication requests submitted via custom
protocol running on top of TCP/IP.

•	 Package auth_process contains SystemI-
nitialization class that calculates private
and public keys and communicates them
to the prover (Auth applet) and the verifier
process respectively.

•	 Package cardReader contains CardReader-
Interface class that specifies the interface to
the card reader device for Java applications
and provides communication between the
JavaCard applet and the verifier process.
The implementation of CardReaderInter-
face is platform dependent. In our case, it
was implemented using socket interface to
Java Card platform Workstation Develop-
ment Environment (JCWDE) simulator and
to the verifier process.

•	 Package userInterface contains a set of
classes and a standalone Java application
providing a window based interface to
the user. It allows the user to input the
PIN code, after which it then starts the
authentication process.

The application based on this authentication
library must implement classes derived from
(or using) the applet and verifier components.
In addition, it may have to provide an imple-
mentation for the reader interface component.

D. Implementation Difficulties

Number of technical problems arose during
implementation. These may be of interest to
other Java Card developers.

Figure 7. Comparison of key factors of protocols

14 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 8. Presentation of number of bit transmitted

Figure 9. Memory requirements

Figure 10. User authentication scenario

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Java Cards support only bytes and shorts (),
a 16-bit signed two’s complement integer to save
memory in large arrays in situations where the
memory savings actually matters; while the ap-
plets in our application need to handle numbers
up to 64 bits long. The solution was to imple-
ment a library class, residing on the “card”, for
arbitrary-precision nonnegative integers. The
class provides all necessary integer operations
for the implementation of the protocol. Modular
arithmetic operations have been provided for
computing residues and for exponentiation. All
operations implement algorithms described by
Knuth (1997) with radix 256.

Due to U.S. export regulations on cryp-
tography, the javacardx.crypto package is not
included in the JC2RI (Java Card 2.0 Reference
Implementation User’s Guide), so the class
RandomData for generation of pseudo-random
arbitrary-precision integers, necessary for the
generation of the random numbers, is not avail-
able. A class with the same functionality has
been implemented.

The simulation requires a suitable imple-
mentation of the verifier process that can
generate and pass APDUs to the Java Card
simulator. The APDU Generator Window for
manual generation of APDUs was insufficient
for this purpose. A separate Java application
employing socket connection to the simulator
was developed for this purpose.

Finally, it transpired that the designed li-
brary was too heavy for the modern smartcard
devices. The code downloaded into the card
is 9303 bytes long and requires 478 bytes of
variables (assuming |n| = 512 bits), which is too
much for devices with 16 KB ROM and less than
1 KB RAM. Despite this result, we believe that
if the current trends in the smartcard technology
are to continue, the future smartcards will be
more resourceful and suitable for the developed
authentication library. This is also facilitated
by Java Card 3 which is a major evolution and
upgrade of the Java Card 2 platform. While Java
Card 3 enhances the basic security, interoper-
ability, interworking, and multiple-application
support in the platform that exploits new higher
capacity smartcards hardware features with

more and faster memory, higher processing
power and far reaching communication capa-
bilities (Allenbach, 2009).

5. Conclusion

This paper described the development of a
prototype software library providing a zero-
knowledge authentication method for smart-
cards conforming to Java Card specification.
In summary, the following goals have been
achieved:

•	 The limitations of smartcards in general
and Java Card specification in particular
were investigated.

•	 The problems of zero-knowledge au-
thentication protocols were studied and
a comparative analysis of the available
protocols was performed, in order to find
one most suitable for implementation in a
smartcard environment.

•	 A prototype library implementing the
Guillou-Quisquater protocol for use in the
Java Card environment was developed, and
tested using Java Card simulator provided
with the Java Card developer’s kit.

The development of the software showed
that implementation of zero-knowledge proto-
cols for Java Card programming environment
is possible but too unwieldy for existing Java
Card devices with limited capacity. Our next
big challenge is to experiment zero-knowledge
protocols on JAVA Card 3 platform and consid-
ering all the issues related to the economics of
security and privacy (Katos and Patel, 2008) and
how to incorporate evidence-based reputation
facilities (Cvrček et al., 2005).

References

Allenbach, P. (2009). Java Card 3: Classic func-
tionality gets a connectivity boost. Retrieved from
http://java.sun.com/developer/technicalArticles/
javacard/javacard3/

16 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Aronsson, H. A. (1995). Zero knowledge protocols
and small systems. Retrieved from http://www.tml.
tkk.fi/Opinnot/Tik-110.501/1995/zeroknowledge.
html

Beth, T. (1988). Efficient zero-knowledge identi-
fication scheme for smart cards. In D. Barstow, W.
Brauer, P. Brinch Hansen, D. Gries, D. Luckham,
C. Moler et al. (Eds.), Proceedings of the Workshop
on Advances in Cryptology (LNCS 330, pp. 77-84).

Burmester, M., Desmedt, Y., & Beth, T. (1992). Ef-
ficient zero-knowledge identification schemes for
smart cards. The Computer Journal, 35(1), 21–29.
doi:10.1093/comjnl/35.1.21

Chen, Z. (2000). Java card technology for smart
cards: Architecture and programmer’s guide. Upper
Saddle River, NJ: Prentice Hall.

Chen, Z., & Giorgio, R. D. (1998). Understanding
Java Card 2.0-Java World. Retrieved from http://
www.javaworld.com/javaworld/jw-03-1998/jw-
03-javadev.html

Coleman, A. (1998). Giving currency to the Java
Card API. Retrieved from http://www.javaworld.
com/javaworld/jw-02-1998/jw-02-javacard.html

Cvrček, D., Matyáš, V., & Patel, A. (2005). Evidence
processing and privacy issues in evidence-based
reputation systems. Computer Standards & Inter-
faces, 27(5), 533–545. doi:10.1016/j.csi.2005.01.011

Fiat, A., & Shamir, A. (1986). How to prove yourself:
Practical solutions to identification and signature
problems. In A. M. Odlyzko (Ed.), Proceedings of
the Workshop on Advances in Cryptology (LNCS
263, pp. 186-194).

Goldreich, O., Micali, S., & Wigderson, A.
(1991). Proofs that yield nothing but their valid-
ity or all languages in NP have zero-knowledge
proof systems. Journal of the ACM, 38(3).
doi:10.1145/116825.116852

Goldwasser, S., Micali, S., & Rackoff, C. (1985). The
knowledge complexity of interactive proof-systems.
In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (pp. 291-304).

Guillou, L., & Quisquater, J. J. (1988). A practical
zero-knowledge protocol fitted to security micropro-
cessor minimizing both transmission and memory. In
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries,
D. Luckham, C. Moler et al. (Eds.), Proceedings of
the Workshop on Advances in Cryptology (LNCS
330, pp. 123-128).

Guillou, L., & Quisquater, J. J. (1990). A “paradoxi-
cal” dentity-based signature scheme resulting from
zero-knowledge. In S. Goldwasser (Ed.), Proceedings
of the Workshop on Advances in Cryptology (LNCS
403, pp. 216-231).

Herbst, C., Oswald, E., & Mangard, S. (2006). An
AES smart card mplementation resistant to power
analysis attacks. In J. Zhou, M. Yung, & F. Bao (Eds.),
Proceedings of the 4th International Conference on
Applied Cryptography and Network Security (LNCS,
3989, pp. 239-252).

http://www.oracle.com/technetwork/java/javacard/
javacard1-139251.html

International Organization for Standardization.
(1987). ISO/IEC 7816: Electronic identification
cards with contacts, especially smart cards 15 minus
1 Part Series. Geneva, Switzerland: International
Standards Organisation (ISO) and the International
Electrotechnical Commission (IEC).

International Organization for Standardization.
(2000). ISO/IEC 14443: Proximity cards (PICCs)
4 Part Series. Geneva, Switzerland: International
Standards Organisation (ISO) and the International
Electrotechnical Commission (IEC).

ITU-T. (2005). ITU-T recommendation X.509/ISO/
IEC 9594-8: Information technology. Open systems
interconnection - The directory: Public-key and
attribute certificate frameworks. Retrieved from
http://www.infosecurity.org.cn/content/pki_pmi/
x509v4.pdf

Kapron, B., Malka, L., & Srinivasan, V. (2007). A
characterization of non-interactive instance-depen-
dent commitment-schemes (NIC). In Proceedings
of the 34th International EATCS Colloquium on Au-
tomata, Languages and Programming (pp. 328-339).

Katos, V., & Patel, A. (2008). A Partial Equilib-
rium View on Security and Privacy. Information
Management & Computer Security, 16(1), 74–83.
doi:10.1108/09685220810862760

Knuth, D. E. (1997). The art of computer program-
ming: Vol. 2. Seminumerical algorithms (3rd ed.).
Reading, MA: Addison-Wesley.

Kocher, P., Jaffe, J., & Jun, B. (1999). Differential
power analysis. In M. J. Wiener (Ed.), Proceedings
of the Workshop on Advances in Cryptology (LNCS
1666, pp. 388-397).

Meckley, J. (1998). Definition - Smart card. Retrieved
from http://searchsecurity.techtarget.com/definition/
smart-card

International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Micali, S., & Shamir, A. (1990). An improvement of
the Fiat-Shamir identification and signature scheme.
In S. Goldwasser (Ed.), Proceedings of the Workshop
on Advances in Cryptology (LNCS 403, pp. 244-247).

Nguyen, M.-H., & Vadhan, S. (2006, May 21-23).
Zero knowledge with efficient provers. In Proceed-
ings of the Thirty-Eighth Annual ACM Symposium
on Theory of Computing, Seattle, WA (pp. 287-295).

Ohta, K., & Okamoto, T. (1990). A modification of
the Fiat-Shamir scheme. In S. Goldwasser (Ed.),
Proceedings of the Workshop on Advances in Cryp-
tology (LNCS 403, pp. 232-243).

Ong, S., & Vadhan, S. (2007). Zero knowledge and
soundness are symmetric. In M. Naor (Ed.), Proceed-
ings of the 26th Annual International Conference on
Advances in Cryptology (LNCS 4515, pp. 187-209).

Oracle. (2010). Java Card platform specification
2.2.2. Retrieved from http://java.sun.com/javacard/
specs.html

Oracle. (2010). Smart Card overview-Chip com-
parisons. Retrieved from http://www.oracle.com/
technetwork/java/javacard/documentation/smart-
cards-136372.html#chart

Oritz, C. E. (2003). An introduction to JAVA Card
technology – Part 1. Retrieved from.

Patel, A. (2010). Concept of mobile agent-based
electronic marketplace – Safety measures . In Lee,
I. (Ed.), Encyclopedia of e-business development
and management in the digital economy (Vol. 1, pp.
252–264). Hershey, PA: IGI Global.

Peyret, P. (1995). Which Smart Card technologies
will you need to ride the information highway safely?
Retrieved from http://www.gemalto.com/gemplus/
index.html

Quisquater, J. J., Quisquater, M., Guillou, L., Guillou,
M., Guillou, G., Guillou, A., et al. (1990). How to
explain zero-knowledge protocols to your children.
In G. Brassard (Ed.), Proceedings of the Workshop on
Advances in Cryptology (LNCS 435, pp. 628-631).

Schneier, B. (1996). Applied cryptography: Proto-
cols, algorithms, and source code in C (2nd ed.).
New York, NY: John Wiley & Sons.

Schnorr, C. P. (1990). Efficient identification and
signatures for smart cards. In G. Brassard (Ed.),
Proceedings of the Workshop on Advances in Cryp-
tology (LNCS 435, pp. 239-251).

Sun Microsystems. (1997). Java Card 2.0 refer-
ence implementation user’s guide Java Card 2.0
programming concept. Retrieved from http://www.
it.iitb.ac.in/~satish/phd/smartcard/usinix_99/java-
cardapi21/jc2ri-users-guide.pdf

Vadhan, S. P. (2004). An unconditional study of
computational zero knowledge. In Proceedings of
the 45th Annual IEEE Symposium on Foundations
of Computer Science (pp. 176-185).

Wei, Q., & Patel, A. (2009). A secure and trustworthy
framework for mobile agent-based e-marketplace
with digital forensics and security protocols. Inter-
national Journal of Mobile Computing and Multi-
media Communications, 1(3), 8–26. doi:10.4018/
jmcmc.2009070102

Ahmed Patel received his MSc and PhD degrees in Computer Science from Trinity College
Dublin (TCD) in 1978 and 1984 respectively, specializing in the design, implementation and
performance analysis of packet switched networks. He is a Professor in Computer Science at
Universiti Kebangsaan Malaysia. He is visiting professor at Kingston University in the UK. He
has published over two and ten hundred technical and scientific papers and co-authored several
books. He is currently involved in the R&D of cybercrime investigations and forensic comput-
ing, intrusion detection & prevention systems, cloud computing autonomic computing, Web
search engines, e-commerce and developing a framework and architecture of a comprehensive
quality of service facility for networking protocols and advanced services. He is a member of
the Editorial Advisory Board of the following International Journals: (i) Computer Standards
& Interface, (ii) Information Management & Computer Security and (iii) Cyber Criminology.

18 International Journal of Information Security and Privacy, 5(3), 1-18, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Kenan Kalajdzic received his BSc degree in Electrical Engineering and his MSc in Telecom-
munications and Computer Science from University of Sarajevo, Bosnia and Herzegovina. His
interests span a wide range of topics in the area of operating systems and computer security. He
is currently working as a lecturer at the Center for Computing Education in Sarajevo, and as an
external visiting researcher with Prof. Ahmed Patel at the Universiti Kebangsaan Malaysia. He
has published 4 papers. He is a reviewer of papers for Computer Standards & Interface Journal.

Laleh Golafshan received her B.S. from Islamic Azad University, Iran in year 2005, and her
M.S. degree in (Computer Science) from Universiti Kebangsaan Malaysia (UKM), Depart-
ment of Computer Science in 2011. Prior to her Masters degree, she ran a Private IT Training
College in Shiraz. Her research interests are data mining, optimization and classification; and
undertaking research in software engineering and computer security in collaboration with Prof.
Dr. Ahmed Patel. Currently, she teaches computer engineering and IT courses as an instructor
in Islamic Azad University Fars Science and Research Branch and also performs researcher at
this university.

Nice Mona Taghavi, a.k.a. CMT, received her B.Sc. degree in Information Technology from Parand
Islamic Azad University of Iran in 2007. Besides her involvement in several Iranian national ICT
research projects, she had worked for an IT consulting and project managing company which was
responsible for overseeing and preparing some of the technical reports for the Supreme Council
of Information and Communication Technology (SCICT) of Iran programme. Currently, she is
pursuing her MSc in Information Systems at Universiti Kebangsaan Malaysia and undertaking
research in cooperation with Prof. Dr. Ahmed Patel in advanced secure Web-based information
systems and Secure Mobile Agent-based E-Marketplace Systems. She has published 4 papers.
She is a reviewer of papers for Computer Standards & Interface Journal.

